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The top-down parsing of expressions
Summary

Using grammar and program transformation a compact, efficient and easily used method of parsing infix
expressions is derived. The resulting algorithm does not require the construction of precedence matrices,
neither does it normally require transformation of the reference grammar for expressions. The method uses
only two parsing procedures with functions which give the numerical precedence of each operator, and

indicate which operators are left-associative and which right-associative.

KEYWORDS Recursive-descent parsing  Expression parsing  Operator-precedence parsing

Iniroduction

Infix expressions can easily be parsed by conventional recursive descent methods, but the resulting parser
is very inefficient - even for a trivial expression a number of procedure calls equal to the number of
precedence levels is needed. It has been statedd' that the transformations needed to make the grammar
suitable as the basis of such a parser are tedious, and the final parser too opaque. For these reasons
compiler writers often recourse to operator-precedence parsers for expressions, embedded in a top-down

parser for the rest of the language.

Richards ! gives a procedure for parsing expressions which uses recursion rather than an explicit stack
despite being derived using the operator-precedence technique. The procedure is essenti_aliy identical to the
one given here (performing the same number of tests of each operator symbol), but requires the
construction of the operator-precedence matrix. We show how the procedure can be derived by grammar-
and program-transformation from the recursive descent method, using only numerical precedences and an
indication of left- or right-associativity. The resulting program can parse an expression unsing a number of
procedure calls approximately equal to the number of nodes in its abstract syniax tree, independent of the
number of precedence levels in the grammar, The operator symbols of any particular expression grammar
appear only in two small functions, which frequently removes the need for grammar transformation before
the method can be used. Hanson2 shows how the number of procedure definitions used in a recursive
descent parser can be reduced, but does rot show how the number of procedure activations can be reduced.

For this reason, Hanson’s method is not in-fact eguivalent to Richards’.
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The top-down parsing of expressions
The algorithm

Two simple functions (Priority and RightAssoc) are used to map character values to numbers
(representing precedences) and booleans, respectively. Examples are given below. These encode the usual
relative precedences and associativities of addition, multiplication and exponentiation. Non-operator
characters are assigned a precedence of zero, so that it is not necessary to specify what characters can
follow an expression,

proc Priority(c) =

case cof
u+u . 1 | e h = 2 D nTn _— 3
otherwise 0
endcase
endproc
proc RightAssoc(c) =
case ¢ of "T" => true
otherwise false
endcase
endproc

The next two procedures complete the parser for formulae composed of these infix operators and single-

character variable names, constructing the correct abstract syntax tree.

3. The keyword initialise is used for a declaration of an

The notation used is similar to that of Bornat
updatable location, initialised to the value of the expression given; let similarly declares a non-updatable
variable. The two functions mkleaf and mknode construct new syntax tree nodes containing operands and
operators respectively. Function CurrC returns the character at the current reading position, without side-
effects, Similarly, function GetC returns the current character, but also advances the reading position by

one. A version of Dijkstra’s guarded commands (eg Gries® } has been used in the imperative pérts of the

program to express conditional execution and iteration.

An expression is parsed using an initial call E{1). It is clear by inspection that the number of calls of E is
one more than the rumber of operator nodes of the syntax tree constructed, while the number of calls of P

is equal to the number of leaves of the tree. Each use of parentheses in the expression parsed leads to one
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The top-down parsing of expressions
The algorithm

additional call of each procedure.

proc E{prec) =
initialise p:=P();
do Priority{CurrC()) = prec —
let oper = GetG();
let oprec = Priority(oper);
p = mknode(p, oper, E(if RightAssoc{oper) then oprec else oprec+1))

od;
return p
endproc
prog P{} =
case CurrC() of
" =
begin
GetC();
let p=E(1);
if GetC() ="y —» fall fi;
~returnp
end
ctherwise
return mkleaf(GetC())
endcase
endproc

The structure of the parsing routine is directly related to the ambiguous operator grammar:
E=P{"+"E|"*"E|"T"E}
P="("E"Y" ]letter
where curly brackets indicate zero or more repetitions of their contents, and vertical bar indicates choice.
The analyser uses ‘pragmatic’ information about the operators to guide a deterministic one-track parse in
such a way that simple formulae are recognised more efficiently than with conventional one-track analysers

based on unambiguous grammars.

Conventional top-down parsing

There is a standard technique (eg. Ah04) for constructing a top-down parser for infix expressions, given
an ambiguous grammar and precedence/associativity information. A grammar rule is introduced for each
level of precedence. For each level, either all the operators are left associative or else they are right

associative. In the former case the rule takes the form:

E = En+1 { On En+l}

where n is the precedence of the operators On introduced in this rule. For right associative operators 4
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The top-down parsing of expressions
Conventional top-down parsing

right-recursive rule is used:

By =Ep 1 [0 Byl
Square brackets indicate an optional element. The rule for the highest precedence level uses the rule for

expression primaries, which we have already seen, in place of the reference to a greater precedence level.

eg. for the operators as used in the program above:
Ei1=E2{"+"E2}
E2=E3 {"*"E3}
E3=P["T"E3]
P - "(ﬂ EI n)" ’ id

Derivation of the parser

This is shown using the example grammar already introduced. The reader is invited to confirm that at no
step is a particular property of the grammar used in any way that would reduce the generality of the result.
We proceed by substituting, in each of the rules for expressions, for the leading non-terminal symbol,
giving:

El = P [ II?" E3} { N*ﬂ E3 } { ll'+l| E2 }
B3 =P { n?ir E3] { gt B3 }
E3=P{"T"E3]
P . I!(u E lr)" lid
In the programs below the construction of the parse tree is not shown and as the definitions of P, Priority

and RightAssoc are the same in each example they are not repeated.

The analyser produced from these rules is even larger than that produced directly, but is amenable to
optimisation, Consider for example the proceduse for rule E1:
pro¢ ET() =
P();
if CurrC()="T" — GetC(); E3() fi;
do CurrC{}="+" — GetC(); E3() od;
do CurrG()="+" —» GetC(); E2{) od
endproc
This would be the procedure called, say, to parse the right hand side of an expression. For example input

such as "x:=0" the symbol following the zero would be tested three times before the procedure returned.

However, it is possible to collapse the succession of tests into one.
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The top-down parsing of expressions
Derivation of the parser
Clearly the final loop can only be executed in an initial state such that the current input character is not
"+ This is an invariant of the loop, since the procedure E2 finishes with another loop that also establishes
this state. There is a general result for loop-transformations that is useful here: provided it is not possible
for B and C to be true at the same time, and not B is an invariant of instruction T, the following two
programs are equivalent.
I: do B~»S od; do C—T od
and
IdoB—»S 0O C-Tod
Assuming termination, program I executes statement S a finite number of times, then executes statement T
a finite number of times. In general, program J produces an interleaving of executions of S and T. But the
invariance of not B means that no further executions of S are possible after the first execution of T, The
requirement that B and C cannot be true at the same time ensures that program J js deterministic. Both
programs produce the state not B solely by repeated execution of S, so the number of executions must be

the same. Similarly given the same initial state the number of executions of T must be the same.
Another useful, standard resn1t3 i§ that:

doB-»S O CsTod

is equivalent to

doBorC —if B»S O C—»Tfiod

Using these results the two loops of procedure E1 can be transformed, eventually giving the following:

proc E1{) =
P{);
if CurrC()="T" - GetC(); E3(} fi;
do CurrC{} & {"+", "+"} —»
case GetC() of "+" => E3() [0 "+" => E2() endcase
od
endproc

The if statement is replaced by a loop since the call E3() ensures that such a loop can never iterate more

than once. Then a similar argument to the above allows us to merge the resulting loop with the final one,
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The top-down parsing of expressions
Derivation of the parser

giving:
proc E1{} =
PO;
dO Currc() c {uTu’ u*u‘ u+n} -
case GetC() of "M => E3() [I ""=>E3() [ "+"=> E2() endcase
od
endproc

The two other procedures E2 and ES are readily transformed to:

proc E2() =
P(;
do CurrC() e {"T", "+"} —
case GetC() of "T" => E3() [ "+" => E3() endcase
od
endproc

pro¢ E3() =
P
do CurrC) e {"T"} -
case GetC() of "T" = E3() endcase
od
endproc
Obviously the most general version of the case statement could be used in all three procedures. The
condition-parts of the loops are encoded using tests of numerical precedences. In E1, E2 and E3 the

substitution is Priority(CurrC()) = 1, Priority(CurrC()) = 2 and Priority(CurrC()} > 3, respectively.

The three procedures are now identical, except in the use of the constants 1, 2 and 3 respectively in
procedures E1, E2 and E3. We therefore parameterize on this number, collapsing the procedures into one:
proc E(n) =
PO ’
do Priority(CurrC{)} = n >
case GetC{) of "T" => E(3) [ "+"=> E(3) 0 "+" => E(2) endcase
od
endproc
This version is further simplified and generalised on the basis of two observations. First, the call following

each left associative operator is to the procedure for the next higher precedence. Second, the call after a

right associative operator is found is to the procedure for the same precedence. This is a direct consequence
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The top-down parsing of expressions
Derivation of the parser

of the way the unambiguous grammar was constructed, Thus,

proc E(n) =
P();
do Priority(CurrC()) =n —
let oper = GetC{);
let oprec = Priority{oper);
E(if RightAssoc(oper) then oprec else oprec+1)
od
endproc

This procedure no longer depends directly on the operator symbols or the number of precedence levels,

User-declared infix operators

In many applications the precedence and associativity functions could, for efficiency, be encoded as
tables indexed on characters or lexical items. Alternatively, the syntactic properties of each operator could
be stored in the symbol table. This facilitates the provision of user-defined infix operators. Precedence and
infix status ‘declarations” are propeFIy regarded as compiler directives, and need to be recognised by the
parser. If it is required ﬁo make such directives follow the usual scope rules, the parser will also have to

undo the effects of the directives on block exit.

Unary prefix operators

These are conveniently recognised by the procedure P - this is simplest if such operators bind more
tightly than any infix operator (as in Algol 68, but not in Pascal). The extra grammar productions required
appear as new alternatives in the rule for primaries (ie. P}, and hence each prefix operator is recognised by
its own guard in the case-statement in procedure P. If it is required that "- - 3" be interpreted as "-(-3)", the

following production may be used:

P = "-" P i id! "(" El n)?l
It is possible to arrange that "-3T4" be interpreted as "-(3T4)", but "-3+4" as “(-3)+4", using a procedure for

primaries derived from:

P = !l_" Ez | id I "(" :El |!)!l

Thus one may define a language in which "-maxint+maxint" evaluates to zero without overflow, and also
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The top-down parsing of expressions
Unary prefix operators

372" evaluates to minus nine. The Pascal productions6

that exclude "4%-3" from the language are
difficult to enforce efficiently using the present method. It is not unknown for compilers to accept such

‘superlanguage’ features, perhaps because it is hard to imagine a useful error report.

Operator precedence

The method described here requires that all the operators for a particular precedence level have the same
associativity. The operator precedence method does not have this restriction; see for example the rules for
the shift operators in BcrLL. However, although production of the operator precedence matrix is usually
considered trivial, there is no obvious relationship between the grammar and the final parser. Previoasly'4
there has often been some doubt as whether or not an operator precedence parser ‘accepts exactly the

7

desired language’. Bornat’ gives a useful discussion of the use of recursion in operator precedence parsing,

together with a readily accessible, simplified version of Richards’ algorithm;‘.

Conclusion

The recursive descent technique makes possible the construction of a compact and easily comprehended
parser directly from the usual informal description of the expression part of a programming language. No
construction of precedence matrices is necessary. It is gratifying that the resulting parser is more efficient
than one directly constructed from an unambiguous grammar, although the gain is in practice small, On
favourable input (expressions involving only two levels of precedence out of a possible eight), using Pascal
for the implementation, an improvement of about 25% in the execution time of a simple calculator was
obtained. Simple expressions, on which the algorithm does well, are of course more commonly

encountered than complex ones.

Since the operator symbols are recognised as such solely by their precedence, user-declaration of infix

operators is trivial, and carries no executional overhead,

In contrast with other top-down techniques, additional levels of precedence can be added without

changing the cost of parsing simple or complex expressions.
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The top-down parsing of expressions
Conclusion

Many language definitions use ambiguous expression grammars, disambiguated by ‘informal’ remarks
about the precedences and associativities of the various operators. The algorithm shown can be used in
these cases without modification, by encoding the informal remarks into two simple functions.
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