
LL(*): The Foundation of the ANTLR Parser Generator
DRAFT

Accepted to PLDI 2011

Terence Parr
University of San Francisco

parrt@cs.usfca.edu

Kathleen S. Fisher
AT&T Labs Research

kfisher@research.att.com

Abstract
Despite the power of Parser Expression Grammars (PEGs)
and GLR, parsing is not a solved problem. Adding nonde-
terminism (parser speculation) to traditional LL and LR
parsers can lead to unexpected parse-time behavior and in-
troduces practical issues with error handling, single-step de-
bugging, and side-effecting embedded grammar actions. This
paper introduces the LL(*) parsing strategy and an asso-
ciated grammar analysis algorithm that constructs LL(*)
parsing decisions from ANTLR grammars. At parse-time,
decisions gracefully throttle up from conventional fixed k ≥
1 lookahead to arbitrary lookahead and, finally, fail over to
backtracking depending on the complexity of the parsing de-
cision and the input symbols. LL(*) parsing strength reaches
into the context-sensitive languages, in some cases beyond
what GLR and PEGs can express. By statically removing as
much speculation as possible, LL(*) provides the expressiv-
ity of PEGs while retaining LL’s good error handling and
unrestricted grammar actions. Widespread use of ANTLR
(over 70,000 downloads/year) shows that it is effective for a
wide variety of applications.

1. Introduction
Parsing is not a solved problem, despite its importance and
long history of academic study. Because it is tedious and
error-prone to write parsers by hand, researchers have spent
decades studying how to generate efficient parsers from high-
level grammars. Despite this effort, parser generators still
suffer from problems of expressiveness and usability.

When parsing theory was originally developed, machine
resources were scarce, and so parser efficiency was the
paramount concern. In that era, it made sense to force
programmers to contort their grammars to fit the con-
straints of LALR(1) or LL(1) parser generators. In con-
trast, modern computers are so fast that programmer ef-
ficiency is now more important. In response to this de-
velopment, researchers have developed more powerful, but
more costly, nondeterministic parsing strategies following
both the “bottom-up” approach (LR-style parsing) and the
“top-down” approach (LL-style parsing).

In the “bottom-up” world, Generalized LR (GLR) [16]
parsers parse in linear to cubic time, depending on how
closely the grammar conforms to classic LR. GLR essentially
“forks” new subparsers to pursue all possible actions ema-
nating from nondeterministic LR states, terminating any
subparsers that lead to invalid parses. The result is a parse
forest with all possible interpretations of the input. Elkhound
[10] is a very efficient GLR implementation that achieves
yacc-like parsing speeds when grammars are LALR(1). Pro-
grammers unfamiliar with LALR parsing theory, though,
can easily get nonlinear GLR parsers.

In the “top-down” world, Ford introduced Packrat parsers
and the associated Parser Expression Grammars (PEGs) [5,
6]. PEGs preclude only the use of left-recursive grammar
rules. Packrat parsers are backtracking parsers that attempt
the alternative productions in the order specified. The first
production that matches at an input position wins. Pack-
rat parsers are linear rather than exponential because they
memoize partial results, ensuring input states will never be
parsed by the same production more than once. The Rats!
[7] PEG-based tool vigorously optimizes away memoization
events to improve speed and reduce the memory footprint.

A significant advantage of both GLR and PEG parser
generators is that they accept any grammar that conforms
to their meta-language (except left-recursive PEGs). Pro-
grammers no longer have to wade through reams of conflict
messages. Despite this advantage, neither GLR nor PEG
parsers are completely satisfactory, for a number of reasons.

First, GLR and PEG parsers do not always do what
was intended. GLR silently accepts ambiguous grammars,
those that match the same input in multiple ways, forcing
programmers to detect ambiguities dynamically. PEGs have
no concept of a grammar conflict because they always choose
the “first” interpretation, which can lead to unexpected or
inconvenient behavior. For example, the second production
of PEG rule A → a|ab (meaning “A matches either a
or ab”) will never be used. Input ab never matches the
second alternative since the first symbol, a, matches the
first alternative. In a large grammar, such hazards are not
always obvious and even experienced developers can miss
them without exhaustive testing.

Second, debugging nondeterministic parsers can be very
difficult. With bottom-up parsing, the state usually repre-
sents multiple locations within the grammar, making it dif-
ficult for programmers to predict what will happen next.
Top-down parsers are easier to understand because there is
a one-to-one mapping from LL grammar elements to parser
operations. Further, recursive-descent LL implementations
allow programmers to use standard source-level debuggers
to step through parsers and embedded actions, facilitat-
ing understanding. This advantage is weakened significantly,
however, for backtracking recursive-descent packrat parsers.
Nested backtracking is very difficult to follow!

Third, generating high-quality error messages in nonde-
terministic parsers is difficult but very important to com-
mercial developers. Providing good syntax error support re-
lies on parser context. For example, to recover well from an
invalid expression, a parser needs to know if it is parsing
an array index or, say, an assignment. In the first case, the
parser should resynchronize by skipping ahead to a] token.
In the second case, it should skip to a ; token. Top-down
parsers have a rule invocation stack and can report things
like “invalid expression in array index.” Bottom-up parsers,

on the other hand, only know for sure that they are match-
ing an expression. They are typically less able to deal well
with erroneous input. Packrat parsers also have ambiguous
context since they are always speculating. In fact, they can-
not recover from syntax errors because they cannot detect
errors until they have seen the entire input.

Finally, nondeterministic parsing strategies cannot easily
support arbitrary, embedded grammar actions, which are
useful for manipulating symbol tables, constructing data
structures, etc. Speculating parsers cannot execute side-
effecting actions like print statements, since the speculated
action may never really take place. Even side-effect free
actions such as those that compute rule return values can be
awkward in GLR parsers [10]. For example, since the parser
can match the same rule in multiple ways, it might have
to execute multiple competing actions. (Should it merge all
results somehow or just pick one?) GLR and PEG tools
address this issue by either disallowing actions, disallowing
arbitrary actions, or relying on the programmer to avoid
side-effects in actions that could be executed speculatively.

1.1 ANTLR

This paper describes version 3.3 of the ANTLR parser gen-
erator and its underlying top-down parsing strategy, called
LL(*), that address these deficiencies. The input to ANTLR
is a context-free grammar augmented with syntactic [14] and
semantic predicates and embedded actions. Syntactic pred-
icates allow arbitrary lookahead, while semantic predicates
allow the state constructed up to the point of a predicate to
direct the parse. Syntactic predicates are given as a gram-
mar fragment that must match the following input. Semantic
predicates are given as arbitrary Boolean-valued code in the
host language of the parser. Actions are written in the host-
language of the parser and have access to the current state.
As with PEGs, ANTLR requires programmers to avoid left-
recursive grammar rules.

The contributions of this paper are 1) the top-down pars-
ing strategy LL(*) and 2) the associated static grammar
analysis algorithm that constructs LL(*) parsing decisions
from ANTLR grammars. The key idea behind LL(*) parsers
is to use regular-expressions rather than a fixed constant or
backtracking with a full parser to do lookahead. The analy-
sis constructs a deterministic finite automata (DFA) for each
nonterminal in the grammar to distinguish between alterna-
tive productions. If the analysis cannot find a suitable DFA
for a nonterminal, it fails over to backtracking. As a result,
LL(*) parsers gracefully throttle up from conventional fixed
k ≥ 1 lookahead to arbitrary lookahead and, finally, fail over
to backtracking depending on the complexity of the parsing
decision. Even within the same parsing decision, the parser
decides on a strategy dynamically according to the input
sequence. Just because a decision might have to scan arbi-
trarily far ahead or backtrack does not mean that it will
at parse-time for every input sequence. In practice, LL(*)
parsers only look one or two tokens ahead on average de-
spite needing to backtrack occasionally (Section 6). LL(*)
parsers are LL parsers with supercharged decision engines.

This design gives ANTLR the advantages of top-down
parsing without the downsides of frequent speculation. In
particular, ANTLR accepts all but left-recursive context-
free grammars, so as with GLR or PEG parsing, program-
mers do not have to contort their grammars to fit the pars-
ing strategy. Unlike GLR or PEGs, ANTLR can statically
identify some grammar ambiguities and dead productions.
ANTLR generates top-down, recursive-descent, mostly non-

speculating parsers, which means it supports source-level de-
bugging, produces high-quality error messages, and allows
programmers to embed arbitrary actions. A survey of 89
ANTLR grammars [1] available from sorceforce.net and
code.google.com reveals that 75% of them had embedded
actions, counting conservatively, which reveals that such ac-
tions are a useful feature in the ANTLR community.

Widespread use shows that LL(*) fits within the pro-
grammer comfort zone and is effective for a wide vari-
ety of language applications. ANTLR 3.x has been down-
loaded 41,364 (binary jar file) + 62,086 (integrated into
ANTLRworks) + 31,126 (source code) = 134,576 times ac-
cording to Google Analytics (unique downloads January 9,
2008 - October 28, 2010). Projects using ANTLR include
Google App Engine (Python), IBM Tivoli Identity Man-
ager, BEA/Oracle WebLogic, Yahoo! Query Language, Ap-
ple XCode IDE, Apple Keynote, Oracle SQL Developer IDE,
Sun/Oracle JavaFX language, and NetBeans IDE.

This paper is organized as follows. We first introduce
ANTLR grammars by example (Section 2). Next we for-
mally define predicated grammars and a special subclass
called predicated LL-regular grammars (Section 3). We then
describe LL(*) parsers (Section 4), which implement pars-
ing decisions for predicated LL-regular grammars. Next, we
give an algorithm that builds lookahead DFA from ANTLR
grammars (Section 5). Finally, we support our claims regard-
ing LL(*) efficiency and reduced speculation (Section 6).

2. Introduction to LL(*)

In this section, we give an intuition for LL(*) parsing by ex-
plaining how it works for two ANTLR grammar fragments
constructed to illustrate the algorithm. Consider nontermi-
nal s, which uses the (omitted) nonterminal expr to match
arithmetic expressions.

s : ID
| ID ’=’ expr
| ’unsigned’* ’int’ ID
| ’unsigned’* ID ID
;

Nonterminal s matches an identifier (ID), an ID followed
by an equal sign and then an expression, zero or more
occurrences of the literal unsigned followed by the literal int
followed by an ID, or zero or more occurrences of unsigned
followed by two IDs. ANTLR grammars use yacc-like syntax
with extended BNF (EBNF) operators such as Kleene star
(*) and token literals in single quotes.

When applied to this grammar fragment, ANTLR’s
grammar analysis yields the LL(*) lookahead DFA in Fig-
ure 1. At the decision point for s, ANTLR runs this DFA on
the input until it reaches an accepting state, where it selects
the alternative for s predicted by the accepting state.

Even though we need arbitrary lookahead to distinguish
between the 3rd and 4th alternatives, the lookahead DFA
uses the minimum lookahead per input sequence. Upon int
from input int x, the DFA immediately predicts the third
alternative (k = 1). Upon T (an ID) from T x, the DFA
needs to see the k = 2 token to distinguish alternatives 1,
2, and 4. It is only upon unsigned that the DFA needs to
scan arbitrarily ahead, looking for a symbol (int or ID) that
distinguishes between alternatives 3 and 4.

The lookahead language for s is regular, so we can match
it with a DFA. With recursive rules, however, we usually
find that the lookahead language is context-free rather than
regular. In this case, ANTLR fails over to backtracking if the

s0

s1
ID

s2unsigned

s3=>3
int

s4=>2

=

s5=>4

ID
s6=>1EOF

ID
unsigned

int

Figure 1. LL(*) lookahead DFA for rule s. Notation
sn => i means “predict the ith alternative.”

s0 s1'-'

s2=>1ID

s3=>2
INT

ID

s4'-'

INT

{synpred1_T}?

{true}?

Figure 2. LL(*) parsing decision DFA for rule s2
using mixed k ≤ 3 lookahead and backtracking

programmer has requested this feature by adding syntactic
predicates. As a convenience, option backtrack=true auto-
matically inserts syntactic predicates into every production,
which we call “PEG mode” because it mimics the behavior
of PEG parsers. However, before resorting to backtracking,
ANTLR’s analysis algorithm builds a DFA that adds a few
extra states that allow it avoid backtracking for many input
cases. In the following rule s2, both alternatives can start
with an arbitrary number of - negation symbols; the second
alternative does so using recursive rule expr.

options {backtrack=true;} // auto-insert syntactic preds
s2 : ’-’* ID | expr ’;’ ;
expr : INT | ’-’ expr ;

Figure 2 shows the lookahead DFA that ANTLR constructs
for this input. This DFA can immediately choose the ap-
propriate alternative upon either input x or 1; by looking
at just the first symbol. Upon - symbols, the DFA matches
a few - before failing over to backtracking. The number of
times ANTLR unwinds the recursive rule before backtrack-
ing is controlled by an internal constant m, which we set to
1 for this example. Despite the possibility of backtracking,
the decision will not backtrack in practice unless the input
starts with “--”, an unlikely expression prefix.

3. Predicated Grammars
To describe LL(*) parsing precisely, we need to first formally
define the predicated grammars from which they are derived.
A predicated grammar G = (N,T, P, S,Π,M) has elements:

• N is the set of nonterminals (rule names)

• T is the set of terminals (tokens)

• P is the set of productions

• S ∈ N is the start symbol

• Π is a set of side-effect-free semantic predicates

• M is a set of actions (mutators)

A ∈ N Nonterminal
a ∈ T Terminal
X ∈ (N ∪ T) Grammar symbol
α, β, δ ∈ X∗ Sequence of grammar symbols
u, x, y, w ∈ T ∗ Sequence of terminals
wr ∈ T ∗ Remaining input terminals
ε Empty string
π ∈ Π Predicate in host language
µ ∈M Action in host language
λ ∈ (N ∪Π ∪M) Reduction label
~λ = λ1..λn Sequence of reduction labels
Production Rules:
A→ αi ith context-free production of A
A→ (A′i)=> αi ith production predicated on syntax A′i
A→ {πi}? αi ith production predicated on semantics
A→ {µi} ith production with mutator

Figure 3. Predicated Grammar Notation

Predicated grammars are written using the notation
shown in Figure 3. Productions are numbered to express
precedence as a means to resolve ambiguities. The first pro-
duction form represents a standard context-free grammar
rule. The second denotes a production gated by a syntactic
predicate: symbol A expands to αi only if the current input
also matches the syntax described by A′i. Syntactic pred-
icates enable arbitrary, programmer-specified, context-free
lookahead. The third form denotes a production gated by
a semantic predicate: symbol A expands to αi only if the
predicate πi holds for the state constructed so far. The final
form denotes an action: applying such a rule updates the
state according to mutator µi.

The derivation rules in Figure 4 define the meaning of
a predicated grammar. To support semantic predicates and
mutators, the rules reference state S, which abstracts user
state during parsing. To support syntactic predicates, the
rules reference wr, which denotes the input remaining to be

matched. The judgment form (S, α)
λ⇒ (S′, β), may be read:

“In machine state S, grammar sequence α reduces in one step
to modified state S′ and grammar sequence β while emitting

trace λ.” The judgment (S, α)
~λ

==⇒∗(S′, β) denotes repeated
applications of the one-step reduction rule, accumulating
all actions in the process. We omit λ when it is irrelevant
to the discussion. These reduction rules specify a leftmost
derivation. A production with a semantic predicate πi can
fire only if πi is true of the current state S. A production with
syntactic predicate A′i can fire only if the string derived from
A′i in the current state is a prefix of the remaining input,
written w � wr. Actions that occur during the attempt
to parse A′i are executed speculatively. They are undone
whether or not A′i matches. Finally, an action production
uses the specified mutator µi to update the state.

Formally, the language generated by grammar sequence
α is L(S, α) = {w | (S, α) ⇒∗ (S′, w)} and the language of
grammar G is L(G) = {w | (ε, S) ⇒∗ (S, w)}. Theoretically,
the language class of L(G) is recursively enumerable because
each mutator could be a Turing machine. In practice, gram-
mar writers do not use this generality, and so we consider
the language class to be the context-sensitive languages in-
stead. The class is context-sensitive rather than context-free
because predicates can check both the left and right context.

This formalism has various syntactic restrictions not
present in actual ANTLR input, for example, forcing predi-
cates to the left-edge of rules and forcing mutators into their
own rules. We can make these restrictions without loss of

Prod A→ α
(S, uAδ)⇒ (S, uαδ) Action

A→ {µ}
(S, uAδ) µ⇒ (µ(S), uδ)

Sem

πi(S)
A→ {πi}?αi

(S, uAδ) πi==⇒ (S, uαiδ)
Syn

(S, A′i)⇒∗ (S′, w)
w � wr

A→ (A′i)=>αi

(S, uAδ)
A′

i==⇒ (S, uαiδ)

Closure
(S, α)

λ
==⇒ (S, α′), (S, α′)

~λ
==⇒∗(S, β)

(S, α)
λ~λ

==⇒∗(S, β)

Figure 4. Predicated Grammar Leftmost Derivation Rules

generality because any grammar in the general form can be
translated into this more restricted form [1].

One of the key concepts behind parsing is the language
matched by a production at a particular point in the parse.

Definition 1. C(α) = {w | (ε, S)⇒∗ (S, uαδ)⇒∗ (S′, uw)}
is the continuation language for production α.

Finally, grammar position α .β means “after α but before β
during generation or parsing.”

3.1 Resolving ambiguity

An ambiguous grammar is one in which the same string may
be recognized in multiple ways. The rules in Figure 4 do not
preclude ambiguity. However, for a practical parser, we want
each input to correspond to a unique parse. To that end,
ANTLR uses the order of the productions in the grammar
to resolve ambiguities, with conflicts resolved in favor of the
rule with the lowest production number. Programmers are
instructed to make semantic predicates mutually exclusive
for all potentially ambiguous input sequences, making such
semantic productions unambiguous. However, that condi-
tion cannot be enforced because predicates are written in a
Turing-complete language. If the programmer fails to satisfy
this condition, ANTLR uses production order to resolve the
ambiguity. This policy matches what is done in PEGs [5, 7]
and is useful for concisely representing precedence.

3.2 Predicated LL-regular grammars

There is one final concept that is helpful in understanding
the LL(*) parsing framework, namely, the notion of a pred-
icated LL-regular grammar. In previous work, Jarzabek and
Krawczyk [8] and Nijholt [13] define LL-regular grammars to
be a particular subset of the non-left-recursive, unambigu-
ous CFGs. In this work, we extend the notion of LL-regular
grammars to predicated LL-regular grammars for which we
will construct efficient LL(*) parsers. We require that the
input grammar be non-left-recursive; we use rule ordering
to ensure that the grammar is unambiguous.

LL-regular grammars differ from LL(k) grammars in that,
for any given nonterminal, parsers can use the entire re-
maining input to differentiate the alternative productions
rather than just k symbols. LL-regular grammars require
the existence of a regular partition of the set of all terminal
sequences for each nonterminal A. Each block of the parti-
tion corresponds to exactly one possible production for A.
An LL-regular parser determines to which regular set the
remaining input belongs and selects the corresponding pro-
duction. Formally,

Definition 2. Let R = (R1, R2, . . . , Rn) be a partition of
T ∗ into n nonempty, disjoint sets Ri. If each block Ri is

regular, R is a regular partition. If x, y ∈ Ri, we write
x ≡ y (mod R).

Definition 3. G is predicated LL-regular if, for any two
alternative productions of every nonterminal A expanding
to αi and αj, there exists regular partition R such that

(ε, S)⇒∗ (S, wiAδi)⇒ (S, wiαiδi)⇒∗ (Si, wix) (1)

(ε, S)⇒∗ (S, wjAδj)⇒ (S, wjαjδj)⇒∗ (Sj , wjy) (2)

x ≡ y (mod R) (3)

always imply that αi = αj and Si = Sj.1

4. LL(*) Parsers
Existing parsers for LL-regular grammars, proposed by Ni-
jholt [13] and Poplawski [15], are linear but often impractical
because they cannot parse infinite streams such as socket
protocols and interactive interpreters. In the first of two
passes, these parsers must read the input from right to left.

Instead, we propose a simpler left-to-right, one-pass strat-
egy called LL(*) that grafts lookahead DFA onto LL parsers.
A lookahead DFA matches regular partition R associated
with a specific nonterminal and has an accept state for each
Ri. At a decision point, LL(*) parsers expand production i if
Ri matches the remaining input. As a result, LL(*) parsers
are O(n2), but in practice, they typically examine one or
two tokens (Section 6). As with previous parsing strategies,
an LL(*) parser exists for every LL-regular grammar. Un-
like previous work, LL(*) parsers can take as input a predi-
cated LL-regular grammar; they handle predicates by insert-
ing special edges into the lookahead DFA that correspond to
the predicates.

Definition 4. Lookahead DFA are DFA augmented with
predicates and accept states that yield predicted produc-
tion numbers. Formally, given predicated grammar G =
(N,T, P, S,Π,M), DFA M = (S, Q,Σ,∆, D0, F) where:

• S is the system state inherited from surrounding parser

• Q is the set of states

• Σ = T ∪Π is the edge alphabet

• ∆ is the transition function mapping Q× Σ→ Q

• D0 ∈ Q is the start state

• F = {f1, f2, . . . , fn} is the set of final states, with one
fi ∈ Q per regular partition block Ri (production i)

A transition in ∆ from state p to state q on symbol a ∈ Σ
has the form p

a→ q. There can be at most one such tran-
sition. Predicate transitions, written p

π→ fi, must target a
final state, but there can be more than one such transition
eminating from p. The instantaneous configuration c of the
DFA is (S, p, wr) where S is the system state and p is the
current state; the initial configuration is (S, D0, wr). The no-
tation c 7→ c′ means the DFA changes from configuration c
to c′ using the rules in Figure 5. As with predicated gram-
mars, the rules do not forbid ambiguous DFA paths arising
from predicated transitions. In practice, ANTLR tests edges
in order to resolve ambiguities.

For efficiency, lookahead DFA match lookahead sets
rather than continuation languages. GivenR = ({ac∗}, {bd∗}),

1 To be strictly correct, this definition technically corresponds to
Strong LL-regular, rather than LL-regular as Nijholt [13] points
out. Strong LL parsers ignore left context when making decisions.

p
a−→ q

(S, p, aw) 7→ (S, q, w)
πi(S) p

πi−→ fi

(S, p, w)
πi7→ (S, fi, w)

(S, fi, w)
Accept, predict production i

Figure 5. Lookahead DFA Configuration Change Rules

for example, there is no point in looking beyond the first
symbol. The lookahead sets are ({a}, {b}).

Definition 5. Given partition R distinguishing n alterna-
tive productions, the lookahead set for production i is the
minimal-prefix set of Ri that still uniquely predicts i:

LAi = {w |ww′ ∈ Ri, w /∈ LAj for j 6= i and no strict

prefix of w has the same property}

4.1 Erasing syntactic predicates

To avoid a separate recognition mechanism for syntactic
predicates, we reduce syntactic predicates to semantic pred-
icates that launch speculative parses. To “erase” syntac-
tic predicate (A′i)=>, we replace it with semantic predi-
cate {synpred(A′i)}?. Function synpred returns true if A′i
matches the current input; otherwise it returns false. To sup-
port PEG “not predicates,” we can flip the result of calling
function synpred, as suggested by Ford [6].

4.2 Arbitrary actions in predicate grammars

Formal predicated grammars fork new states S during spec-
ulation. In practice, duplicating system state is not feasible.
Consequently, ANTLR deactivates mutators during specula-
tion by default, preventing actions from “launching missiles”
speculatively. However, some semantic predicates rely on
changes made by mutators, such as the symbol table manip-
ulations required to parse C. Avoiding speculation whenever
possible attenuates this issue, but still leaves a semantic haz-
ard. To address this issue, ANTLR supports a special kind
of action, enclosed in double brackets {{...}}, that executes
even during speculation. ANTLR requires the programmer
to verify that these actions are either side-effect free or
undoable. Luckily, symbol table manipulation actions, the
most common {{...}} actions, usually get undone automati-
cally. For example, a rule for a code block typically pushes
a symbol scope but then pops it on exit. The pop effectively
undoes the side-effects that occur during code block.

5. LL(*) Grammar Analysis
For LL(*), analyzing a grammar means finding a lookahead
DFA for each parsing decision, i.e., for each nonterminal in
the grammar with multiple productions. In our discussions,
we use A as the nonterminal in question and αi for i ∈ 1..n
as the corresponding collection of right-hand sides. Our goal
is to find for each A a regular partition R, represented by a
DFA, that distinguishes between productions. To succeed, A
must be LL-regular: partition block Ri must contain every
sentence in C(αi), the continuation language of αi, and the
Ri must be disjoint. The DFA tests the remaining input for
membership in each Ri; matching Ri predicts alternative i.
For efficiency, the DFA matches lookahead sets instead of
partition blocks.

It is important to point out that we are not parsing with
the DFA, only predicting which production the parser should
expand. The continuation language C(αi) is often context-
free, not regular, but experience shows there is usually an ap-
proximating regular language that distinguishes between the

c

d

ε
ε

ε
ε A

A

A ε

ε

ε
ε

b

a

p
10

p7 p8

p11

p2 p3

p5 p6

pS

p1

p4

p'S

p9
p'ApA

Figure 6. ATN for G with P={S → Ac |Ad,A→ aA | b}

Input Grammar Element Resulting ATN Transitions

A→ αi pA
ε−→ pA,i

ε−→ αi
ε−→ p′A

A→ {πi}?αi pA
ε−→ pA,i

πi−→ αi
ε−→ p′A

A→ {µi} pA
ε−→ pA,i

µi−→ p′A
A→ ε pA

ε−→ pA,i
ε−→ p′A

αi = X1X2 . . . Xm
for Xj ∈ N ∪ T, j = 1..m

p0
X1−−→ p1

X2−−→ . . .
Xm−−→ pm

Figure 7. Predicated Grammar to ATN transformation

αi. For example, consider rule A → [A] | id that matches
balanced brackets around an identifier, i.e., the context-free
language {[nid]n}. Approximating the C(αi) sets with regu-
lar expressions gives a partition that satisfies the LL-regular
condition: R = {{[∗id]∗}, {id}}. In fact, the first input sym-
bol is sufficient to predict alternatives: LA = {{[}, {id}}.
The decision is LL(1).

Not all grammars are LL-regular and so our algorithm
may fail to find a partition for A. Worse, Poplawski [15]
showed that the LL-regular condition is undecidable so we
must use heuristics to prevent nontermination, sometimes
forcing the algorithm to give up before finding R even
when A is LL-regular. In such cases, we fall back on other
strategies, discussed in Sections 5.3 and 5.4, rather than
failing to create a DFA.

The LL(*) analysis algorithm starts by converting the in-
put grammar to an equivalent augmented transition network
(ATN) [17]. It then computes lookahead DFA by simulating
the actions of the ATN in a process that mimics how the
well-known subset construction algorithm computes a DFA
that simulates the actions of an NFA.

5.1 Augmented transition networks

Given predicated grammar G = (N,T, P, S,Π,M), the cor-
responding ATN MG = (Q,Σ,∆, E, F) has elements:

• Q is the set of states

• Σ is the edge alphabet N ∪ T ∪Π ∪M
• ∆ is the transition relation mapping Q× (Σ ∪ ε)→ Q

• E = {pA | A ∈ N} is the set of submachine entry states

• F = {p′A | A ∈ N} is the set of submachine final states

We describe how to compute Q and ∆ shortly.
ATNs resemble the syntax diagrams used to document

programming languages, with an ATN submachine for each
nonterminal. For example, Figure 6 gives the ATN for a

simple grammar. Nonterminal edges p
A−→ p′ are like function

calls. They transfer control of the ATN to A’s submachine,
pushing return state p′ onto a state stack so it can continue
from p′ after reaching the stop state for A’s submachine.

To get an ATN from a grammar, we create a submachine
for each nonterminal A as shown in Figure 7. Start state pA
targets pA,i created from the left edge of αi. The last state

created from αi targets p′A. The language matched by the
ATN is the same as the language of the original grammar.

Grammar analysis is like an inter-procedural flow analysis
that statically traces an ATN-like graph representation of a
program, discovering all nodes reachable from a top-level
call site. The unique configuration of a program for flow
purposes is a graph node and the call stack used to reach
that node. Depending on the type of analysis, it might also
track some semantic context such as the parameters from
the top-level call site.

Similarly, grammar analysis statically traces paths through
the ATN reachable from the “call site” of production αi,
which is the left edge state pA,i. The terminal edges collected
along a path emanating from pA,i represent a lookahead se-
quence. Analysis continues until each lookahead sequence
is unique to a particular alternative. Analysis also needs to
track any semantic predicate πi from the left edge of αi
in case it is needed to resolve ambiguities. Consequently,
an ATN configuration is a tuple (p, i, γ, π) with ATN state
p, predicted production i, ATN call stack γ, and optional
predicate π. We will use the notation c.p, c.i, c.γ, and c.π to
denote projecting the state, alternative, stack, and predicate
from configuration c, respectively. Analysis ignores machine
storage S because it is unknown at analysis time.

5.2 Modified subset construction algorithm

For grammar analysis purposes, we modify subset construc-
tion to process ATN not NFA configurations. Each DFA
state D represents the set of possible configurations the ATN
could be in after matching a prefix of the remaining input
starting from state pA,i. Key modifications include:

• The closure operation simulates the push and pop of
ATN nonterminal invocations.

• If all the configurations in a newly discovered state pre-
dict the same alternative, the analysis does not add the
state to the work list; no more lookahead is necessary.

• To resolve ambiguities, the algorithm adds predicate
transitions to final states if appropriate predicates exist.

The structure of the algorithm mirrors that of subset con-
struction. It begins by creating DFA start state D0 and
adding it to a work list. Until no work remains, the algo-
rithm adds new DFA states computed by the move and clo-
sure functions, which simulate the transitions of the ATN.
We assume that the ATN corresponding to our input gram-
mar G, MG = (QM , N ∪T ∪Π∪M,∆M , EM , FM), and the
nonterminal A that we are analyzing are in scope for all the
operations of the algorithm.

Function createDFA, shown in Algorithm 8, is the entry
point: calling createDFA(pA) constructs the lookahead DFA
for A. To create start state D0, the algorithm adds config-
uration (pA,i, i, [], πi) for each production A → πi αi and
configuration (pA,i, i, [],−) for each production A→ αi; the
symbol “−” denotes the absence of a predicate. The core of
createDFA is a combined move-closure operation that cre-
ates new DFA states by finding the set of ATN states directly
reachable upon each input terminal symbol a ∈ T :

move(D, a) = {(q, i, γ, π) | p a−→ q, (p, i, γ, π) ∈ D}

and then adding the closure of those configurations. Once
the algorithm identifies a new state D′, it invokes resolve to
check for and resolve ambiguities. If all of the configurations
in D′ predict the same alternative j, then D′ is marked as
fj , the accept state for alternative j, and D′ is not added to

Alg. 8: createDFA(ATN State pA) returns DFA

work := []; ∆ := {}; D0 := {};
F := {fi | fi := new DFA state, 1 . . . numAlts(A)};
Q := F ;

foreach pA
ε−→ pA,i ∈ ∆M do

if pA
ε−→ pA,i

πi−→ p then π := πi else π := −;
D0 += closure(D0, (pA,i, i, [], π));

end
work += D0; Q += D0;
DFA := DFA(−, Q, T ∪Π,∆, D0, F);
foreach D ∈ work do
foreach a ∈ T do
mv := move(D, a);
D′ :=

S
c∈mv

closure(D, c);

if D′ /∈ Q then
resolve(D′);
switch findPredictedAlt(D′) do
case None: work += D′;
case Just j: fj := D′;

endsw
Q += D′;

end
∆ += D

a−→ D′;
end
foreach c ∈ D such that wasResolved(c) do

∆ += D
c.π−−→ fc.i;

end
work -= D;

end
return DFA;

the work list: once the algorithm can uniquely identify which
production to predict, there is no point in examining more
of the input. This optimization is how the algorithm con-
structs DFA that match the minimum lookahead sets LAj
instead of the entire remaining input. Next, the algorithm
adds an edge from D to D′ on terminal a. Finally, for each
configuration c ∈ D with a predicate that resolves an am-
biguity, createDFA adds a transition predicated on c.π from
D to the final state for alternative c.i. The test wasResolved
checks whether the resolve step marked configuration c as
having been resolved by a predicate.

Closure The LL(*) closure operation, shown in Algo-
rithm 9, is more complex than the closure function from
NFA subset construction because of the ATN stack. Never-
theless, the intuition is the same. When called on a config-
uration c, closure recursively finds all ATN states reachable
from c’s state by traversing all ATN edges that are not ter-
minals, i.e., predicates, nonterminals, and mutators.

The call closure(D, c) takes the DFA state D to which
c belongs as an additional argument. The function starts
by adding the argument configuration to a busy list to
avoid redundant computation and infinite loops. To simulate

ATN nonterminal transition p
A−→ p′, closure duplicates

configuration c, pushing return state p′ onto its stack. At
submachine stop state p′A, closure duplicates c, popping p′

from its stack. If closure reaches pA with an empty stack,
we have no information statically about which rule invoked
A. (This situation only happens when there is a path from
pA,i to p′A with no terminal edges.) In this case we have

Alg. 9: closure(DFA State D, c = (p, i, γ, π))
returns set closure

if c ∈ D.busy then return {}; else D.busy += c;
closure := {c};
if p = p′A (i.e., p is stop state) then
if γ = p′γ′ then closure += closure(D, (p′, i, γ′, π));
else closure +=

S
∀ p2 : p1

A−→p2∈∆M

closure(D, (p2, i, [], π));

end
foreach transition t emanating from ATN state p do
switch t do

case p
A−→ p′:

depth := number of occurrences of A in γ;
if depth = 1 then
D.recursiveAlts += i;
if |D.recursiveAlts| > 1 then
throw LikelyNonLLRegularException;

end
if depth ≥ m, (i.e., the max recursion depth) then

mark D to have recursion overflow;
return closure;

end
closure += closure(D, (pA, i, p

′γ, π));

case p
π′
−→ q, p

µ−→ q, or p
ε−→ q transition:

closure += closure(D, (q, i, γ, π));
endsw

end
return closure;

to assume any production p1
A−→ p2 in the input grammar

might have invoked A, and so closure must chase all such
states p2.

If closure detects recursive nonterminal invocations (sub-
machines directly or indirectly invoking themselves) in more
than one alternative, it terminates DFA construction for A
by throwing an exception; Section 5.4 describes our fall back
strategy. If closure detects recursion deeper than internal
constant m, closure marks the state parameter D as having
overflowed. In this case, DFA construction for A continues
but closure no longer pursues paths derived from c’s state
and stack. We discuss this situation more in Section 5.3.

DFA State Equivalence The analysis algorithm relies
on the notion of equivalence for DFA states:

Definition 6. Two DFA states are equivalent, D ≡ D′, if
their configuration sets are equivalent. Two ATN configura-
tions are equivalent, c ≡ c′, if the p, i, and π components are
equal and their stacks are equivalent. Two stacks are equiv-
alent, γ1 ≡ γ2, if they are equal, if at least one is empty, or
if one is a suffix of the other.

This definition of stack equivalence reflects ATN con-
text information when closure encounters a submachine stop
state. Because analysis searches the ATN for all possible
lookahead sequences, an empty stack is like a wildcard. Any

transition p1
A−→ p2 could have invoked A, so analysis must

include the closure of every such p2. Consequently, a clo-
sure set can have two configurations c and c′ with the same
ATN state but with c.γ = ε and c′.γ 6= ε. This can only
happen when closure reaches a nonterminal’s submachine
stop state with an empty stack and by chasing states fol-
lowing references to that nonterminal, closure reenters that
submachine. For example, consider the DFA for S in gram-

mar S → a|ε, A → SS. Start state construction computes
closure at positions S → . a and S → . ε then S → ε ., S’s
stop state. The state stack is empty so closure chases states
following references to S, such as position A→ S .S. Finally,
closure reenters S, this time with a nonempty stack.

Equivalence of γ1 ≡ γ1γ2 where γ1, γ2 6= ε degenerates to
the previous case of γ1 = ε. Given configurations (p, , γ1,)
and (p, , γ1γ2,) in D, closure reaches p following the same
sequence of most recent submachine invocations, γ1. Once γ1

pops off, closure has configurations (p, , [],) and (p, , γ2,).

Resolve One of benefits of static analysis is that it can
sometimes detect and warn users about ambiguous nonter-
minals. After closure finishes, the resolve function (Algo-
rithm 10) looks for conflicting configurations in its argu-
ment state D. Such configurations indicate that the ATN
can match the same input with more than one production.

Definition 7. If DFA state D contains configurations c =
(p, i, γi, πi) and c′ = (p, j, γj , πj) such that i 6= j and
γi ≡ γj, then D is an ambiguous DFA state and c and c′ are
conflicting configurations. The set of all alternative numbers
that belong to a conflicting configuration of D is the conflict
set of D.

For example, the ATN for subrule (a|a) in A → (a|a) b
merges back together and so analysis reaches the same state
from both alternatives with the same (empty) stack context:

p2 p3
a

a
bp4 p'A

p5 p6

ε
ε

p1

ε

εpA
ε

D0 = {(p2, 1), (p5, 2)}, where we abbreviate (p2, 1, [],−)
as (p2, 1) for clarity. D1 = {(p3, 1), (p4, 1), (p6, 2), (p4, 2)},
reachable with symbol a, has conflicting configurations
(p4, 1) and (p4, 2). No further lookahead will resolve the
ambiguity because ab is in the continuation language of
both alternatives.

If resolve detects an ambiguity, it calls resolveWithPred-
icate (Algorithm 11) to see if the conflicting configura-
tions have predicates that can resolve the ambiguity. For
example, a predicated version of the previous grammar,
A→ ({π1}? a | {π2}? a) b, yields ATN:

p3 p4
a

a
bp5 p'A

p7 p8

ε

ε
p1

ε

ε

p2

p6
π2

π1

pA
ε

D0 for decision state p1 starts with {(p2, 1, [], π1), (p6, 2, [], π2)}
to which we add {(p3, 1, [], π1), (p7, 2, [], π2)} for closure.
D1 has conflicting configurations as before, but now predi-
cates can resolve the issue at runtime with DFA D0

a−→ D1,

D1
π1−→ f1, D1

π2−→ f2.
If resolve found predicates, it returns without emitting

a warning, leaving createDFA to incorporate the predicates
into the DFA. Without predicates, there is no way to re-
solve the issue at runtime, so resolve statically removes
the ambiguity by giving precedence to A’s lowest conflict-
ing alternative by removing configurations associated with
higher-numbered conflicting alternatives. For example, in
the unpredicated grammar for A above, the resulting DFA
is D0

a−→ f1 because the analysis resolves conflicts by remov-
ing configurations not associated with highest precedence
production 1, leaving {(p3, 1), (p4, 1)}.

Alg. 10: resolve(DFA State D)
conflicts := the conflict set of D;
if |conflicts| = 0 and not overflowed(D) then return;
if resolveWithPreds(D, conflicts) then return;
resolve by removing all c from D such that c.i ∈ conflicts

and c.i 6= min(conflicts);
if overflowed(D) then report recursion overflow;
else report grammar ambiguity;

Alg. 11: resolveWithPreds(DFA State D, set conflicts)
returns boolean

pconfigs := []; // config with predicate for alt i
foreach i ∈ conflicts do

pconfigs[i] := pick any representative (, i, , π) ∈ D;
end
if |pconfigs| < |conflicts| then return false;
foreach c ∈ pconfigs do mark c as wasResolved ;
return true;

If closure tripped the recursion overflow alarm, resolve
may not see conflicting configurations in D, but D might
still predict more than one alternative because the analysis
terminated early to avoid nontermination. The algorithm
can use predicates to resolve the potential ambiguity at
runtime, if they exist. If not, the algorithm again resolves in
favor of the lowest alternative number and issues a warning
to the user.

5.3 Avoiding analysis intractability

Because the LL-regular condition is undecidable, we expect
a potential infinite loop somewhere in any lookahead DFA
construction algorithm. Recursive rules are the source of
nontermination. Given configuration c = (p, i, γ) (we omit π
from configurations for brevity in the following) the closure

of c at transition p
A−→ p′ includes (pA, i, p

′γ). If closure
reaches p again, it will include (pA, i, p

′p′γ). Ultimately,
closure will “pump” the recursive rule forever, leading to
stack explosion. For example, for the ATN with recursive
nonterminal A given in Figure 6, the DFA start state D0 for
S → Ac |Ad is:

D0 = {(p1, 1, []), (pA, 1, p2), (p7, 1, p2), (p10, 1, p2),

(p4, 2, []), (pA, 2, p5), (p7, 2, p5), (p10, 2, p5)}

Function move(D0, a) reaches (p8, 1, p2) to create D1 via
(p7, 1, p2) in D0. The closure of (p8, 1, p2) traverses the
implied ε edge to pA, adding three new configurations:
(pA, 1, p9p2), (p7, 1, p9p2), (p10, 1, p9p2). D1 has the same
configuration as D0 for p7 but with a larger stack. The con-
figuration stacks grow forever as pm9 p2 for recursion depth m,
yielding an ever larger DFA path: D0

a−→ D1
a−→ . . .

a−→ Dm.
There are two solutions to this problem. Either we for-

get all but the top m states on the stack (as Bermudez and
Schimpf [2] do with LAR(m)) or simply avoid computing
closure on configurations with m recursive invocations to
any particular submachine start state. We choose the lat-
ter because it guarantees a strict superset of LL(k) (when
m ≥ k). We do not have to worry about an approximation
introducing invalid sequences in common between the alter-
natives. In contrast, Bermudez and Schimpf give a family of
LALR(1) grammars for which there is no fixed m that gives
a valid LAR(m) parser for every grammar in the family.
Hard-limiting recursion depth is not a serious restriction in

Java1.5: Native ANTLR grammar, uses PEG mode.

RatsC, RatsJava: Rats! grammars, manually converted
to ANTLR syntax using PEG mode while preserving
the essential structure. We removed left-recursion, which
Rats! supports but ANTLR does not.

VB.NET, TSQL, C#: Commercial grammars for Mi-
crosoft languages provided by Temporal Wave, LLC.

Figure 12. Benchmark ANTLR grammars

practice. Programmers are likely to use (regular) grammar
S → a∗bc | a∗bd instead of the version in Figure 6.

5.4 Aborting DFA construction

As a heuristic, we terminate DFA construction for nonter-
minal A upon discovering recursion in more than one alter-
native. (Analysis for S in Figure 6 would actually terminate
before triggering recursion overflow.) Such decisions are ex-
tremely unlikely to have exact regular partitions and, since
our algorithm does not approximate lookahead, there is no
point in pursuing the DFA in vain. ANTLR’s implementa-
tion falls back on LL(1) lookahead for A, with backtracking
or other predicates if resolve detects recursion in more than
one alternative.

5.5 Hoisting Predicates

This algorithm and the formal predicated grammar seman-
tics in Section 3 require that predicates appear at production
left edges. This restriction is cumbersome in practice and
can force users to duplicate predicates. The full algorithm
in ANTLR automatically discovers and hoists all predicates
visible to a decision even from productions further down
the derivation chain. (See [1] for full algorithm and discus-
sion.) ANTLR’s analysis also handles EBNF operators in
the right-hand side of productions, e.g. A→ a∗b by adding
cycles to the ATN.

6. Empirical Results
This paper makes a number of claims about the suitabil-
ity and efficiency of our analysis algorithm and the LL(*)
parsing strategy. In this section, we support these claims
with measurements obtained by running ANTLR 3.3 on six
large, real-world grammars, described in Figure 12, and pro-
filing the resulting parsers on large sample input sentences,
described in Figure 13. We include two PEG-derived gram-
mars to show ANTLR can generate valid parsers from PEGs.
(Readers can examine the non-commercial grammars, sam-
ple input, test methodology, and raw analysis results [1].)

6.1 Static grammar analysis

We claim that our grammar analysis algorithm statically op-
timizes away backtracking from the vast majority of parsing
decisions and does so in a reasonable amount of time. Table 1
summarizes ANTLR’s analysis of the six grammars. ANTLR
processes each of them in a few seconds except for the
8,231 line-SQL grammar, which takes 13.1 seconds. Anal-
ysis times include input grammar parsing, analysis (with
EBNF construct processing and predicate hoisting [1]), and
parser generation. (As with the exponentially-complex clas-
sic subset construction algorithm, ANTLR’s analysis can hit
a “land-mine” in rare cases; ANTLR provides a means to iso-
late the offending decisions and manually set their lookahead
parameters. None of these grammars hits land-mines.)

All the grammars use backtracking to some extent, pro-
viding evidence that it is not worth contorting a large gram-

RatsJavaParser.java: Parser generated by ANTLR for
RatsJava grammar; tests both Java parsers.

pre javaParser.c: Preprocessed ANTLR-generated parser
for Java1.5 grammar; tests RatsC parser.

LinqToSqlSamples.cs: Microsoft sample code; tests C#;

big.sql: Collected Microsoft SQL samples; tests TSQL.

Northwind.vb: Microsoft sample code; tests VB.NET.

Figure 13. Benchmark input sentence

Grammar Lines n Fixed Cyclic Backtrack Runtime
Java1.5 1,022 170 150 1 20 (11.8%) 3.1s
RatsC 1,133 143 111 0 32 (22.4%) 2.8s
RatsJava 744 87 73 6 8 (9.2%) 3s
VB.NET 3,505 348 332 0 16 (4.6%) 6.75s
TSQL 8,231 1,120 1,053 10 57 (5.1%) 13.1s
C# 3,481 217 189 2 26 (12%) 6.3s

Table 1. Grammar decision characteristics. “Lines” is the
size of the grammar, n is the number of parsing decisions in
the grammar, “Fixed” is the number of pure LL(k) decisions,
“Cyclic” is the number of pure cyclic DFA (no backtrack-
ing), “Backtrack” is the number of decisions that potentially
backtrack, and the “runtime” is the time to process a gram-
mar and generate an LL(*) parser. Tests performed under
OS X with 2x3.2Ghz Quad-Core Intel Xeon with 14G RAM.

Grammar LL(k) LL(1) Lookahead depth k
1 2 3 4 5 6

Java1.5 88.24% 74.71% 127 20 2 1
RatsC 77.62% 72.03% 103 7 1
RatsJava 83.91% 73.56% 64 8 1
VB.NET 95.40% 88.79% 309 18 4 1
TSQL 94.02% 83.48% 935 78 11 14 9 6
C# 87.10% 78.34% 170 19

Table 2. Fixed lookahead decision characteristics

mar to make it LL(k). The first three grammars use PEG
mode, in which ANTLR automatically puts a syntactic pred-
icate on the left edge of every production. Unlike a PEG
parser, however, ANTLR can statically avoid backtracking
in many cases. For example, ANTLR strips away syntactic
predicates from all but 11.8% of the decisions in Java1.5. As
expected, the RatsC grammar has the highest ratio of back-
tracking decisions at 22.4% because C variable and function
declarations and definitions look the same from the left edge.
The author of the three commercial grammars manually-
specified syntactic predicates, which reduced lookahead re-
quirements. In 4 out of 6 grammars, ANTLR was able to
construct cyclic DFA to avoid backtracking.

Table 1 shows that the vast majority of decisions in the
sample grammars are fixed LL(k) for some k. Table 2 reports
the number of decisions per lookahead depth, showing that
most decisions are in fact LL(1). The table also shows that
ANTLR is able to statically determine k almost all the time,
even though this problem is undecidable in general.

6.2 Parser runtime profiling

At runtime, we claim that LL(*) parsing decisions use only
a few tokens of lookahead on average and parse with reason-
able speed. Table 3 shows that for each sample input file,
the average lookahead depth per decision event is roughly
one token, with PEG-mode parsers requiring almost two.
The average parsing speed is about 26,000 lines / second for

Grammar Input
lines

parse-
time

n avg
k

back.
k

max
k

Java1.5 12,394 471ms 111 1.09 3.95 114
RatsC 37,019 1,375ms 131 1.88 5.87 7,968
RatsJava 12,394 527ms 78 1.85 5.95 1,313
VB.NET 4,649 339ms 166 1.07 3.25 12
TSQL 794 164ms 309 1.08 2.63 20
C# 3,807 524ms 146 1.04 1.60 9

Table 3. Parser decision lookahead depth. n is the number
of decision points covered while parsing. “avg k” is the sum
of all decision event lookahead depths divided by the number
of decision events. “back. k” is the average speculation
depth for backtracking decision events only. “max k” is
the deepest lookahead depth encountered during the parse.
LL(*) parsers were run with Java 1.6.0 under OS X with
2x3.2Ghz Quad-Core Intel Xeon with 14G RAM.

Grammar Can
back.

Did
back.

decision
events

Back-
track

Back.
rate

Java1.5 19 16 462,975 2.36% 45.22%
RatsC 30 24 1,343,176 16.85% 65.27%
RatsJava 8 7 628,340 14.07% 74.68%
VB.NET 6 3 109,257 0.46% 20.84%
TSQL 29 19 17,394 3.38% 27.01%
C# 24 19 141,055 3.68% 40.22%

Table 4. Parser decision backtracking behavior. “Can
back.” is the number of decisions that potentially backtrack.
“Did back.” is the number of those that did for the sample
input. “Backtrack” is the percentage of decision events that
backtracked. “Back. rate” is the likelihood that a potentially
backtracking decision actually backtracks when triggered.

the first three grammars and 9,000 for the other grammars,
which have tree-building overhead.

The average lookahead depth for just the backtracking
decisions is less than six tokens, highlighting the fact that
although backtracking can scan far ahead, usually it doesn’t.
For example, a parser might need to backtrack to match a
C type specifier, but most of the time such specifiers look
like int or int * and so they can be identified quickly. The
grammars not derived from PEGs have much smaller maxi-
mum lookahead depths, indicating the authors did some re-
structuring to take advantage of LL(k) efficiency. The RatsC
grammar, in contrast, backtracks across an entire function
(looking ahead 7,968 tokens in one decision event) instead of
looking ahead just enough to distinguish declarations from
definitions, i.e., between int f(); and int f() {...}.

Although we derived two sample grammars from Rats! ,
we did not compare parser execution times nor memory uti-
lization as one might expect. Both ANTLR and Rats! are
practical parser generators with parsing speed and memory
footprints suitable to most applications. Rats! is also scan-
nerless, unlike ANTLR, which makes memoization caches
hard to compare.

ANTLR statically removes backtracking from most parser
decisions as shown in Table 1. At runtime, ANTLR back-
tracks even less than predicted by static analysis. For exam-
ple, statically we find an average of 10.9% of the decisions
backtrack for our sample grammars but Table 4 shows that
the generated parsers backtrack in only 6.8% of the de-
cision events on average. The non-PEG-derived grammars
backtrack only about 2.5% of the time. This is partly be-
cause some of the backtracking decisions manage uncommon
grammar constructs. For example, there are 1,120 decisions

of any kind in the TSQL grammar but the sample input
exercises only 309 of them.

Most importantly, just because a decision can backtrack,
does not mean it will. The last column in Table 4 shows that
the potentially backtracking decisions (PBDs) only back-
track about half the time on average across the sample
grammars. The commercial VB.NET and TSQL grammars
yield PBDs that backtrack in only about 30% of the decision
events. Some PBDs never trigger backtracking events. Sub-
tracting the first two columns in Table 4 gives the number
of PBDs that avoid backtracking altogether.

We should point out that without memoization, back-
tracking parsers are exponentially complex in the worst case.
This matters for grammars that do a lot of nested back-
tracking. For example, the RatsC grammar appears not to
terminate if we turn off ANTLR memoization support. In
constrast, the VB.NET and C# parsers are fine without it.
Packrat parsing [5] achieve linear parsing results at the cost
of the increased memory for the memoization cache. In the
worst case, we need to squirrel away O(|N | ∗ n) decision
event results (one for each nonterminal decision at each in-
put position). The less we backtrack, the smaller the cache
since ANTLR only memoizes while speculating.

7. Related work
Many parsing techniques exist, but currently the two domi-
nant strategies are Tomita’s bottom-up GLR [16] and Ford’s
top-down packrat parsing [5], commonly referred to by its
associated meta-language PEG [6]. Both are nondetermin-
istic in that parsers can use some form of speculation to
make decisions. LL(*) is an optimization of packrat pars-
ing just as GLR is an optimization of Earley’s algorithm
[4]. The closer a grammar conforms to the underlying LL or
LR strategy, the more efficient the parser in time and space.
LL(*) ranges from O(n) to O(n2) whereas GLR ranges from
O(n) to O(n3). Surprisingly, the O(n2) potential comes from
cyclic lookahead DFA not backtracking (assuming we mem-
oize). ANTLR generates LL(*) parsers that are linear in
practice and that greatly reduce speculation, reducing mem-
oization overhead over pure packrat parsers.

GLR and PEG tend be scannerless, which is necessary if
a tool needs to support grammar composition. Composition
means that programmers can easily integrate one language
into another or create new grammars by modifying and
composing pieces from existing grammars. For example, the
Rats! Jeannie grammar elegantly composes all of C and Java.

The ideas behind LL(*) are rooted in the 1970s. LL(*)
parsers without predicated lookahead DFA edges imple-
ment LL-regular grammars, which were introduced by Jarz-
abek and Krawczyk [8] and Nijholt [13]. Nijholt [13] and
Poplawski [15] gave linear two-pass LL-regular parsing
strategies that had to parse from right-to-left in their first
pass, requiring finite input streams (i.e., not sockets or inter-
active streams). They did not consider semantic predicates.

Milton and Fischer [11] introduced semantic predicates
to LL(1) grammars but only allowed one semantic predi-
cate per production to direct the parse and required the
user to specify the lookahead set under which the predicates
should be evaluated. Parr and Quong [14] introduced syntac-
tic predicates and semantic predicate hoisting, the notion of
incorporating semantic predicates from other nonterminals
into parsing decisions. They did not provide a formal pred-
icated grammar specification or an algorithm to discover
visible predicates. In this paper, we give a formal speci-
fication and demonstrate limited predicate discovery dur-

ing DFA construction. Grimm supports restricted semantic
predicates in his PEG-based Rats! [7] and arbitrary actions
but relies on programmers to avoid side-effects that cannot
be undone. Recently, Jim et al added semantic predicates to
transducers capable of handling all CFGs with Yakker [9].

ANTLR 1.x introduced syntactic predicates as a manually-
controlled backtracking mechanism. The ability to specify
production precedence came as a welcome, but unantici-
pated side-effect of the implementation. Ford formalized the
notion of ordered alternatives with PEGs. Backtracking in
versions of ANTLR prior to 3.x suffered from exponential
time complexity without memoization. Ford also solved this
problem by introducing packrat parsers. ANTLR 3.x users
can turn on memoization with an option.

LL-regular grammars are the analog of LR-regular gram-
mars [3]. Bermudez and Schimpf [2] provided a parsing strat-
egy for LR-regular grammars called LAR(m). Parameter m
is a stack governor, similar to ours, that prevents analysis
algorithm nontermination. LAR(m) builds an LR(0) ma-
chine and grafts on lookahead DFA to handle nondetermin-
istic states. Finding a regular partition for every LL-regular
or LR-regular parsing decision is undecidable. Analysis al-
gorithms for LL(*) and LAR(m) that terminate construct a
valid DFA for a subset of the LL-regular or LR-regular gram-
mar decisions, respectively. In the natural language commu-
nity, Nederhof [12] uses DFA to approximate entire CFGs,
presumably to get quicker but less accurate language mem-
bership checks. Nederhof inlines rule invocations to a specific
depth, m, effectively mimicking the constant from LAR(m).

8. Conclusion
LL(*) parsers are as expressive as PEGs and beyond due
to semantic predicates. While GLR accepts left-recursive
grammars, it cannot recognize context-sensitive languages
as LL(*) can. Unlike PEGs or GLR, LL(*) parsers enable
arbitrary action execution and provide good support for
debugging and error handling. The LL(*) analysis algo-
rithm constructs cyclic lookahead DFA to handle non-LL(k)
constructs and then fails over to backtracking via syntactic
predicates when it fails to find a suitable DFA. Experiments
reveal that ANTLR generates efficient parsers, eliminating
almost all backtracking. ANTLR is widely used in practice,
indicating LL(*) hits a sweet spot in the parsing spectrum.

Finally, we would like to thank Sriram Srinivasan for
contributing to and coining the term LL(*).

References
[1] Paper Appendix.

http://antlr.org/papers/LL-star/index.html .

[2] Bermudez, M. E., and Schimpf, K. M. Practical arbitrary
lookahead LR parsing. JCSS 41, 2 (1990).

[3] Cohen, R., and Culik, K. LR-regular grammars: An exten-
sion of LR(k) grammars. In SWAT ’71.

[4] Earley, J. An efficient context-free parsing algorithm.
CACM 13, 2 (1970), 94–102.

[5] Ford, B. Packrat parsing: Simple, powerful, lazy, linear time.
In ICFP’02, pp. 36–47.

[6] Ford, B. Parsing expression grammars: A recognition-based
syntactic foundation. In POPL’04, pp. 111–122.

[7] Grimm, R. Better extensibility through modular syntax. In
PLDI’06, pp. 38–51.

[8] Jarzabek, S., and Krawczyk, T. LL-Regular grammars.
Information Processing Letters 4, 2 (1975), 31 – 37.

[9] Jim, T., Mandelbaum, Y., and Walker, D. Semantics and
algorithms for data-dependent grammars. In POPL ’10.

[10] McPeak, S., and Necula, G. C. Elkhound: A fast, practical
GLR parser generator. In CC’04.

[11] Milton, D. R., and Fischer, C. N. LL(k) parsing for
attributed grammars. In ICALP (1979).

[12] Nederhof, M.-J. Practical experiments with regular approx-
imation of context-free languages. Comput. Linguist. 26, 1
(2000), 17–44.

[13] Nijholt, A. On the parsing of LL-regular grammars. In
MFCS (1976), Springer Verlag, pp. 446–452.

[14] Parr, T. J., and Quong, R. W. Adding semantic and
syntactic predicates to LL(k)—pred-LL(k). In CC’94.

[15] Poplawski, D. A. On LL-regular grammars. JCSS 18, 3
(1979), 218 – 227.

[16] Tomita, M. Efficient Parsing for Natural Language. Kluwer
Academic Publishers, 1986.

[17] Woods, W. A. Transition network grammars for natural
language analysis. CACM 13, 10 (1970), 591–606.

