
Towards a Universal Code Formatter
through Machine Learning

Terence Parr
University of San Francisco, USA

parrt@cs.usfca.edu

Jurgen Vinju
Centrum Wiskunde & Informatica, Netherlands

Jurgen.Vinju@cwi.nl

Abstract
There are many declarative frameworks that allow us to im-
plement code formatters relatively easily for any specific lan-
guage, but constructing them is cumbersome. The first prob-
lem is that “everybody” wants to format their code differ-
ently, leading to either many formatter variants or a ridicu-
lous number of configuration options. Second, the size of
each implementation scales with a language’s grammar size,
leading to hundreds of rules.

In this paper, we solve the formatter construction problem
using a novel approach, one that automatically derives for-
matters for any given language without intervention from a
language expert. We introduce a code formatter called CODE-
BUFF that uses machine learning to abstract formatting rules
from a representative corpus, using a carefully designed fea-
ture set. Our experiments on Java, SQL, and ANTLR gram-
mars show that CODEBUFF is efficient, has excellent accu-
racy, and is grammar invariant for a given language. It also
generalizes to a 4th language tested during manuscript prepa-
ration.

Categories and Subject Descriptors D.2.3 [Software Engi-
neering]: Coding - Pretty printers

Keywords Formatting algorithms, pretty-printer

1. Introduction
The way source code is formatted has a significant impact
on its comprehensibility [9], and manually reformatting code
is just not an option [8, p.399]. Therefore, programmers need
ready access to automatic code formatters or “pretty printers”
in situations where formatting is messy or inconsistent. Many
program generators also take advantage of code formatters to
improve the quality of their output.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SLE ’16,, October 31-November 01, 2016, Amsterdam, Netherlands.
Copyright c� 2016 ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2997364.2997383

Because the value of a particular code formatting style is
a subjective notion, often leading to heated discussions, for-
matters must be highly configurable. This allows, for exam-
ple, current maintainers of existing code to improve their ef-
fectiveness by reformatting the code per their preferred style.
There are plenty of configurable formatters for existing lan-
guages, whether in IDEs like Eclipse or standalone tools like
Gnu indent, but specifying style is not easy. The emergent
behavior is not always obvious, there exists interdependency
between options, and the tools cannot take context informa-
tion into account [13]. For example, here are the options
needed to obtain K&R C style with indent:

-nbad -bap -bbo -nbc -br -brs -c33 -cd33 -ncdb -ce
-ci4 -cli0 -cp33 -cs -d0 -di1 -nfc1 -nfca -hnl -i4
-ip0 -l75 -lp -npcs -nprs -npsl -saf -sai -saw -nsc
-nsob -nss

New languages pop into existence all the time and each
one could use a formatter. Unfortunately, building a for-
matter is difficult and tedious. Most formatters used in
practice are ad hoc, language-specific programs but there
are formal approaches that yield good results with less ef-
fort. Rule-based formatting systems let programmers specify
phrase-formatting pairs, such as the following sample spec-
ification for formatting the COBOL MOVE statement using
ASF+SDF [3, 12, 13, 15].

MOVE IdOrLit TO Id-list =
from-box(H ["MOVE"

H ts=25 [to-box(IdOrLit)]
H ts=49 ["TO"]
H ts=53 [to-box(Id-list)]])

This rule maps a parse tree pattern to a box expression. A set
of such rules, complemented with default behavior for the
unspecified parts, generates a single formatter with a specific
style for the given language. Section 6 has other related work.

There are a number of problems with rule-based format-
ters. First, each specification yields a formatter for one spe-
cific style. Each new style requires a change to those rules
or the creation of a new set. Some systems allow the rules to
be parametrized, and configured accordingly, but that leads
to higher rule complexity. Second, minimal changes to the
associated grammar usually require changes to the format-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SLE’16, October 31 – November 1, 2016, Amsterdam, Netherlands
c� 2016 ACM. 978-1-4503-4447-0/16/10...$15.00

http://dx.doi.org/10.1145/2997364.2997383

137

ting rules, even if the grammar changes do not affect the lan-
guage recognized. Finally, formatter specifications are big.
Although most specification systems have builtin heuristics
for default behavior in the absence of a specification for a
given language phrase, specification size tends to grow with
the grammar size. A few hundred rules are no exception.

Formatting is a problem solved in theory, but not yet in
practice. Building a good code formatter is still too difficult
and requires way too much work; we need a fresh approach.
In this paper, we introduce a tool called CODEBUFF [11] that
uses machine learning to produce a formatter entirely from
a grammar for language L and a representative corpus writ-
ten in L. There is no specification work needed from the user
other than to ensure reasonable formatting consistency within
the corpus. The statistical model used by CODEBUFF first
learns the formatting rules from the corpus, which are then
applied to format other documents in the same style. Differ-
ent corpora effectively result in different formatters. From a
user perspective the formatter is “configured by example.”

Contributions and roadmap. We begin by showing sample
CODEBUFF output in Section 2 and then explain how and why
CODEBUFF works in Section 3. Section 4 provides empirical
evidence that CODEBUFF learns a formatting style quickly
and using very few files. CODEBUFF approximates the cor-
pus style with high accuracy for the languages ANTLR, Java
and SQL, and it is largely insensitive to language-preserving
grammar changes. To adjust for possible selection bias and
model overfitting to these three well-known languages, we
tested CODEBUFF on an unfamiliar language (Quorum) in
Section 5, from which we learned that CODEBUFF works sim-
ilarly well, yet improvements are still possible. We position
CODEBUFF with respect to the literature in Section 6.

2. Sample Formatting
This section contains sample SQL, Java, and ANTLR code
formatted by CODEBUFF, including some that are poorly for-
matted to give a balanced presentation. Only the formatting
style matters here so we use a small font for space reasons.
Github [11] has a snapshot of all input corpora and format-
ted versions (corpora, testing details in Section 4). To arrive
at the formatted output for document d in corpus D, our test
rig removes all whitespace tokens from d and then applies
an instance of CODEBUFF trained on the corpus without d,
D \ {d}.

The examples are not meant to illustrate “good style.”
They are simply consistent with the style of a specific corpus.
In Section 4 we define a metric to measure the success of the
automated formatter in an objective and reproducible man-
ner. No quantitative research method can capture the qualita-
tive notion of style, so we start with these examples. (We use
“. . . ” for immaterial text removed to shorten samples.)

SQL is notoriously difficult to format, particularly for
nested queries, but CODEBUFF does an excellent job in most
cases. For example, here is a formatted query from file IP-

MonVerificationMaster.sql (trained with sqlite grammar on
sqlclean corpus):
SELECT DISTINCT

t.server_name
, t.server_id
, ’Message Queuing Service’ AS missingmonitors

FROM t_server t INNER JOIN t_server_type_assoc tsta ON t.server_id = tsta.server_id
WHERE t.active = 1 AND tsta.type_id IN (’8’)

AND t.environment_id = 0
AND t.server_name NOT IN

(
SELECT DISTINCT l.address
FROM ipmongroups g INNER JOIN ipmongroupmembers m ON g.groupid = m.groupid

INNER JOIN ipmonmonitors l ON m.monitorid = l.monitorid
INNER JOIN t_server t ON l.address = t.server_name
INNER JOIN t_server_type_assoc tsta ON t.server_id = tsta.server_id

WHERE l.name LIKE ’%Message Queuing Service%’
AND t.environment_id = 0
AND tsta.type_id IN (’8’)
AND g.groupname IN (’Prod O/S Services’)
AND t.active = 1

)
UNION
ALL

And here is a complicated query from dmart_bits_IAPPBO510.sql

with case statements:
SELECT

CASE WHEN SSISInstanceID IS NULL
THEN ’Total’

ELSE SSISInstanceID END SSISInstanceID
, SUM(OldStatus4) AS OldStatus4
...
, SUM(OldStatus4 + Status0 + Status1 + Status2 + Status3 + Status4) AS InstanceTotal

FROM
(

SELECT
CONVERT(VARCHAR, SSISInstanceID) AS SSISInstanceID
, COUNT(CASE WHEN Status = 4 AND

CONVERT(DATE, LoadReportDBEndDate) <
CONVERT(DATE, GETDATE())

THEN Status
ELSE NULL END) AS OldStatus4

...
, COUNT(CASE WHEN Status = 4 AND

DATEPART(DAY, LoadReportDBEndDate) = DATEPART(DAY, GETDATE())
THEN Status

ELSE NULL END) AS Status4
FROM dbo.ClientConnection
GROUP BY SSISInstanceID

) AS StatusMatrix
GROUP BY SSISInstanceID

Here is a snippet from Java, our 2nd test language, taken from
STLexer.java (trained with java grammar on st corpus):
switch (c) {

...
default:

if (c==delimiterStopChar) {
consume();
scanningInsideExpr = false;
return newToken(RDELIM);

}
if (isIDStartLetter(c)) {

...
if (name.equals("if")) return newToken(IF);
else if (name.equals("endif")) return newToken(ENDIF);
...
return id;

}
RecognitionException re = new NoViableAltException("", 0, 0, input);
...
errMgr.lexerError(input.getSourceName(),

"invalid character ’"+str(c)+"’",
templateToken,
re);

...

Here is an example from STViz.java that indents a
method declaration relative to the start of an expression
rather than the first token on the previous line:
Thread t = new Thread() {

@Override
public void run() {

synchronized (lock) {
while (viewFrame.isVisible()) {

try {
lock.wait();

}
catch (InterruptedException e) {
}

}
}

}
};

138

Formatting results are generally excellent for ANTLR, our
third test language. E.g., here is a snippet from Java.g4:

ClassOrIntModifier
: annotation // class or interface
| (’public’ // class or interface

...
| ’final’ // class only
| ’strictfp’ // class or interface
)

;

(Comments are passed through; see Section 3.5.) Among the
formatted files for the three languages, there are a few regions
of inoptimal or bad formatting. CODEBUFF does not capture
all formatting rules and occasionally gives puzzling format-
ting. For example, in the Java8.g4 grammar, the following rule
has all elements packed onto one line (“ -” means we soft-
wrapped output for printing purposes):

unannClassOrIntType
: (unannClassType_lfno_unannClassOrIntType | -

unannInterfaceType_lfno_unannClassOrIntType) -
(unannClassType_lf_unannClassOrIntType | -
unannInterfaceType_lf_unannClassOrIntType)*

;

CODEBUFF does not consider line length during training or
formatting, instead mimicking the natural line breaks found
among phrases of the corpus. For Java and SQL this works
very well, but not always with ANTLR grammars.

Here is an interesting Java formatting issue from Com-
piler.java that is indented too far to the right (column 102);
it is indented from the {{. That is a good decision in general,
but here the left side of the assignment is very long, which
indents the put() code too far to be considered good style.

public Map<...> X = new ... {{
put("anchor", "true");

}};

In STGroupDir.java, the prefix token is aligned improperly:

if (verb) error("loadFile("+f+") in groupdir...
" prefix=" +

prefix);

We also note that some of the SQL expressions are incor-
rectly aligned, as in this sample from SQLQuery23.sql:

AND X NOT LIKE ’...’
AND X NOT LIKE ’...’

AND X NOT...

Despite a few anomalies, CODEBUFF generally reproduces
a corpus’ style well. Now we describe the design used to
achieve these results. In Section 4 we quantify them.

3. The Design of an AI for Formatting
Our AI formatter mimics what programmers do during the
act of entering code. Before entering a program symbol, a

programmer decides (i) whether a space or line break is
required and if line break, (ii) how far to indent the next
line. Previous approaches (see Section 6) make a language
engineer define whitespace injection programmatically.

A formatting engine based upon machine learning op-
erates in two distinct phases: training and formatting. The
training phase examines a corpus of code documents, D,
written in language L to construct a statistical model that rep-
resents the formatting style of the corpus author. The essence
of training is to capture the whitespace preceding each token,
t, and then associate that whitespace with the phrase context
surrounding t. Together, the context and whitespace preced-
ing t form an exemplar. Intuitively, an exemplar captures how
the corpus author formatted a specific, fine-grained piece of a
phrase, such as whether the author placed a newline before or
after the left curly brace in the context of a Java if-statement.

Training captures the context surrounding t as an m-
dimensional feature vector, X , that includes t’s token type,
parse-tree ancestors, and many other features (Section 3.3).
Training captures the whitespace preceding t as the concate-
nation of two separate operations or directives: a whitespace
ws directive followed by a horizontal positioning hpos direc-
tive if ws is a newline (line break). The ws directive generates
spaces, newlines, or nothing while hpos generates spaces to
indent or align t relative to a previous token (Section 3.1).

As a final step, training presents the list of exemplars
to a machine learning algorithm that constructs a statistical
model. There are N exemplars (Xj , wj , hj) for j = 1..N
where N is the number of total tokens in all documents of
corpus D and wj 2 ws , hj 2 hpos . Machine learning mod-
els are typically both a highly-processed condensation of the
exemplars and a classifier function that, in our case, classi-
fies a context feature vector, X , as needing a specific bit of
whitespace. Classifier functions predict how the corpus au-
thor would format a specific context by returning a format-
ting directive. A model for formatting needs two classifier
functions, one for predicting ws and one for hpos (consulted
if ws prediction yields a newline).

CODEBUFF uses a k-Nearest Neighbor (kNN) machine
learning model, which uses the list of exemplars as the actual
model. A kNN’s classifier function compares unknown con-
text vector X to the Xj from all N exemplars and finds the
k nearest. Among these k, the classifier predicts the format-
ting directive that appears most often (details in Section 3.4).
It’s akin to asking a programmer how they normally format
the code in a specific situation. Training requires a corpus
D written in L, a lexer and parser for L derived from gram-
mar G, and the corpus indentation size to identify indented
phrases; e.g., one of the Java corpora we tested indents with
2 not 4 spaces. Let FD,G = (X,W,H, indentSize) denote
the formatting model contents with context vectors forming
rows of matrix X and formatting directives forming elements
of vectors W and H . Function 1 (see appendix) embodies the
training process, constructing FD,G.

139

Once the model is complete, the formatting phase can be-
gin. Formatting operates on a single document d to be for-
matted and functions with guidance from the model. At each
token ti 2 d, formatting computes the feature vector Xi rep-
resenting the context surrounding ti, just like training does,
but does not add Xi to the model. Instead, the formatter
presents Xi to the ws classifier and asks it to predict a ws

directive for ti based upon how similar contexts were for-
matted in the corpus. The formatter “executes” the directive
and, if a newline, presents Xi to the hpos classifier to get an
indentation or alignment directive. After emitting any pre-
ceding whitespace, the formatter emits the text for ti. Note
that any token ti is identified by its token type, string con-
tent, and offset within a specific document, i.

The greedy, “local” decisions made by the formatter give
“globally” correct formatting results; selecting features for
the X vectors is critical to this success. Unlike typical ma-
chine learning tasks, our predictor functions do not yield triv-
ial categories like “it’s a cat.” Instead, the predicted ws and
hpos directives are parametrized. The following sections de-
tail how CODEBUFF captures whitespace, computes feature
vectors, predicts directives, and formats documents.

3.1 Capturing Whitespace as Directives
In order to reproduce a particular style, formatting directives
must encode the information necessary to reproduce whites-
pace encountered in the training corpus. There are five canon-
ical formatting directives:

1. nl : Inject newline
2. sp: Inject space character
3. (align, t): Left align current token with previous token t
4. (indent , t): Indent current token from previous token t
5. none: Inject nothing, no indentation, no alignment

For simplicity and efficiency, prediction for nl and sp

operations can be merged into a single “predict whitespace”
or ws operation and prediction of align and indent can be
merged into a single “predict horizontal position” or hpos

operation. While the formatting directives are 2- and 3-tuples
(details below), we pack the tuples into 32-bit integers for
efficiency, w for ws directives and h for hpos .

For ws operations, the formatter needs to know how many
(n) characters to inject: ws 2 {(nl , n), (sp, n),none} as
computed in Function 2. For example, in the following Java
fragment, the proper ws directive at "a is (sp, 1), meaning
“inject 1 space,” the directive at "b is none , and "c is (nl , 1),
meaning “inject 1 newline.”

x =
"a

y;
"b

z

"c
++;

The hpos directives align or indent token ti relative to
some previous token, tj for j < i as computed by Function
3. When a suitable tj is unavailable, there are hpos directives

that implicitly align or indent ti relative to the first token of
the previous line:

hpos 2 {(align, tj), (indent , tj), align, indent}
In the following Java fragments, assuming 4-space indenta-
tion, directive (indent, if) captures the whitespace at posi-
tion "a, (align, if) captures "b, and (align, x) captures "c.

if (b) {
z

"a
++;

}
"b

f(x,
y

"c
)

for (int i=0; ...
x

"d
=i;

At position "d, both (indent , for) and (align, ‘(’) capture
the formatting, but training chooses indentation over align-
ment directives when both are available. We experimented
with the reverse choice, but found this choice better. Here,
(align, ‘(’) inadvertently captures the formatting because
for happens to be 3 characters.

To illustrate the need for (indent , tj) versus plain indent ,
consider the following Java method fragment where the first
statement is not indented from the previous line.

public void write(String str)
throws IOException {
int

"
n = 0;

Directive (indent, public) captures the indentation of int
but plain indent does not. Plain indent would mean indent-
ing 4 spaces from throws, the first token on the previous
line, incorrectly indenting int 8 spaces relative to public.

Directive indent is used to approximate nonstandard in-
dentation as in the following fragment.

f(100,
0

"
);

At the indicated position, the whitespace does not represent
alignment or standard 4 space indentation. As a default for
any nonstandard indentation, function capture_hpos returns
plain indent as an approximation.

When no suitable alignment or indentation token is avail-
able, but the current token is aligned with the previous line,
training captures the situation with directive align:

return x +
y +
z; // align with first token of previous line

While (align, y) is valid, that directive is not available be-
cause of limitations in how hpos directives identify previous
tokens, as discussed next.

3.2 How Directives Refer to Earlier Tokens
The manner in which training identifies previous tokens for
hpos directives is critical to successfully formatting docu-
ments and is one of the key contributions of this paper. The
goal is to define a “token locator” that is as general as pos-
sible but that uses the least specific information. The more
general the locator, the more previous tokens directives can

140

identify. But, the more specific the locator, the less applica-
ble it is in other contexts. Consider the indicated positions
within the following Java fragments where align directives
must identify the first token of previous function arguments.

f(x,
y

"a
)

f(x+1,
y

"b
)

f(x+1,
y,
�
"c
z)

The absolute token index within a document is a com-
pletely general locator but is so specific as to be inapplicable
to other documents or even other positions within the same
document. For example, all positions "a, "b, and "c could use
a single formatting directive, (align, i), but x’s absolute in-
dex, i, is valid only for a function call at that specific location.

The model also cannot use a relative token index referring
backwards. While still fully general, such a locator is still
too specific to a particular phrase. At position "a, token x is
at delta 2, but at position "b, x is at delta 4. Given argument
expressions of arbitrary size, no single token index delta is
possible and so such deltas would not be widely applicable.
Because the delta values are different, the model could not
use a single formatting directive to mean “align with previous
argument.” The more specific the token locator, the more
specific the context information in the feature vectors needs
to be, which in turn, requires larger corpora (see Section 3.3).

We have designed a token locator mechanism that strikes a
balance between generality and applicability. Not every pre-
vious token is reachable but the mechanism yields a single
locator for x from all three positions above and has proven
widely applicable in our experiments. The idea is to pop up
into the parse tree and then back down to the token of inter-
est, x, yielding a locator with two components: A path length
to an ancestor node and a child index whose subtree’s left-
most leaf is the target token. This alters formatting directives
relative to previous tokens to be: (_, ancestor�, child).

Unfortunately, training can make no assumptions about
the structure of the provided grammar and, thus, parse-tree
structure. So, training at ti involves climbing upwards in the
tree looking for a suitable ancestor. To avoid the same issues
with overly-specific elements that token indexes have, the
path length is relative to what we call the earliest left ances-
tor as shown in the parse tree in Figure 1 for f(x+1,y,-z).

The earliest left ancestor (or just left ancestor) is the
oldest ancestor of t whose leftmost leaf is t, and identifies
the largest phrase that starts with t. (For the special case
where t has no such ancestor, we define left ancestor to be
t’s parent.) It attempts to answer “what kind of thing we are
looking at.” For example, the left ancestor computed from
the left edge of an arbitrarily-complex expression always
refers to the root of the entire expression. In this case, the
left ancestors of x, y, and z are siblings, thus, normalizing
leaves at three different depths to a common level. The token
locator in a directive for x in f(x+1,y,-z) from both y and
z is (_, ancestor�, child) = (_, 1, 0), meaning jump up 1

primary:4

literal:1

,

y

expression ,

primary:5

x

expression

+

)

primary:5

-expression:1

expression:1

primary:5

f

z

expressionList:1

expression:1 expression:1

expression:1

(

expression:1

primary:5

1

Left
ancestor

Left
ancestor

Leftmost
leaf

Left
ancestor

child 0

Figure 1. Parse tree for f(x+1,y,-z). Node rule:n in the tree
indicates the grammar rule and alternative production number used
to match the subtree phrase.

primary:5expression:1expression:1

primary:5 z

x

expression:1

expression

+

y

expression

primary:5

+

Left
ancestor

Leftmost
leaf

ancestor
 Δ=1

child 0

Figure 2. Parse tree for x+y+z;.

level from the left ancestor and down to the leftmost leaf of
the ancestor’s child 0.

The use of the left ancestor and the ancestor’s leftmost
leaf is critical because it provides a normalization factor
among dissimilar parse trees about which training has no
inherent structural information. Unfortunately, some tokens
are unreachable using purely leftmost leaves. Consider the
return x+y+z; example from the previous section and one
possible parse tree for it in Figure 2. Leaf y is unreachable as
part of formatting directives for z because y is not a leftmost
leaf of an ancestor of z. Function capture_hpos must either
align or indent relative to x or fall back on the plain align

and indent .
The opposite situation can also occur, where a given token

is unintentionally aligned with or indented from multiple
tokens. In this case, training chooses the directive with the
smallest ancestor�, with ties going to indentation.

And, finally, there could be multiple suitable tokens that
share a common ancestor but with different child indexes. For
example, if all arguments of f(x+1,y,-z) are aligned, the
parse tree in Figure 1 shows that (align, 1, 0) is suitable to
align y and both (align, 1, 0) and (align, 1, 2) could align
argument -z. Ideally, the formatter would align all func-
tion arguments with the same directive to reduce uncertainty
in the classifier function (Section 3.4) so training chooses
(align, 1, 0) for both function arguments.

141

The formatting directives capture whitespace in between
tokens but training must also record the context in which
those directives are valid, as we discuss next.

3.3 Token Context—Feature Vectors
For each token present in the corpus, training computes
an exemplar that associates a context with a ws and hpos

formatting-directive: (X,w, h). Each context has several fea-
tures combined into a m-dimensional feature vector, X . The
context information captured by the features must be specific
enough to distinguish between language phrases requiring
different formatting but not so specific that classifier func-
tions cannot recognize any contexts during formatting. The
shorter the feature vector, the more situations in which each
exemplar applies. Adding more features also has the poten-
tial to confuse the classifier.

Through a combination of intuition and exhaustive exper-
imentation, we have arrived at a small set of features that
perform well. There are 22 context features computed dur-
ing training for each token, but ws prediction uses only 11 of
them and hpos uses 17. (The classifier function knows which
subset to use.) The feature set likely characterises the context
needs of the languages we tested during development to some
degree, but the features appear to generalize well (Section 5).

Before diving into the feature details, it is worth describ-
ing how we arrived at these 21 features and how they affect
formatter precision and generality. We initially thought that a
sliding window of, say, four tokens would be sufficient con-
text to make the majority of formatting decisions. For exam-
ple, the context for · · · x=1

"
*· · · would simply be the token

types of the surrounding tokens: X=[id,=,int_literal,*]. The
surrounding tokens provide useful but highly-specific infor-
mation that does not generalize well. Upon seeing this ex-
act sequence during formatting, the classifier function would
find an exact match for X in the model and predict the associ-
ated formatting directive. But, the classifier would not match
context · · · x=y

"
+· · · to the same X , despite having the same

formatting needs.
The more unique the context, the more specific the for-

matter can be. Imagine a context for token ti defined as the
20-token window surrounding each ti. Each context derived
from the corpus would likely be unique and the model would
hold a formatting directive specific to each token position
of every file. A formatter working from this model could
reproduce with high precision a very similar unknown file.
The trade-off to such precision is poor generality because the
model has “overfit” the training data. The classifier would
likely find no exact matches for many contexts, forcing it to
predict directives from poorly-matched exemplars.

To get a more general model, context vectors use at most
two exact token type but lots of context information from
the parse tree (details below). The parse tree provides infor-
mation about the kind of phrase surrounding a token posi-
tion rather than the specific tokens, which is exactly what is

Corpus N tokens Unique ws Unique hpos

antlr 19,692 3.0% 4.7%
java 42,032 3.9% 17.4%
java8 42,032 3.4% 7.5%

java_guava 499,029 0.8% 8.1%
sqlite 14,758 8.4% 30.8%
tsql 14,782 7.5% 17.9%

Figure 3. Percentage of unique context vectors in corpora.

needed to achieve good generality. For example, rather than
relying solely on the exact tokens after a = token, it is more
general to capture the fact that those tokens begin an expres-
sion. A useful metric is the percentage of unique context vec-
tors, which we counted for several corpora and show in Fig-
ure 3. Given the features described below, there are very few
unique context for ws decisions (a few %). The contexts for
hpos decisions, however, often have many more unique con-
texts because ws uses 11-vectors and hpos uses 17-vectors.
E.g., our reasonably clean SQL corpus has 31% and 18%
unique hpos vectors when trained using SQLite and TSQL
grammars, respectively.

For generality, the fewer unique contexts the better, as
long as the formatter performs well. At the extreme, a model
with just one X context would perform very poorly because
all exemplars would be of the form (X, _, _). The formatting
directive appearing most often in the corpus would be the
sole directive returned by the classifier function for any X .
The optimal model would have the fewest unique contexts
but all exemplars with the same context having identical for-
matting directives. For our corpora, we found that a majority
of unique contexts for ws and almost all unique contexts for
hpos predict a single formatting directive, as shown in Figure
4. For example, 57.1% of the unique antlr corpus contexts
are associated with just one ws directive and 95.7% of the
unique contexts predict one hpos directive. The higher the
ambiguity associated with a single context vector, the higher
the uncertainty when making decisions during formatting.

The guava corpus stands out as having very few unique
contexts for ws and among the fewest for hpos . This gives
a hint that the corpus might be much larger than necessary
because the other Java corpora are much smaller and yield
good formatting results. Figure 8 shows the effect of corpus
size on classifier error rates. The error rate flattens out after
training on about 10 to 15 corpus files.

In short, few unique contexts gives an indication of the
potential for generality and few ambiguous decisions gives
an indication of the model’s potential for accuracy. These
numbers do not tell the entire story because some contexts
are used more frequently than others and those might all
predict single directives. Further, while a single context could
be associated with multiple directives, most of those could be
one specific directive.

With this perspective in mind, we turn to the details of the
individual features. The ws and hpos decisions use a differ-

142

Corpus Ambiguous
ws directives

Ambiguous
hpos directives

antlr 42.9% 4.3%
java 29.8% 1.7%

java8 31.6% 3.2%
java_guava 23.5% 2.8%
sqlite_noisy 43.5% 5.0%

sqlite 24.8% 5.5%
tsql_noisy 40.7% 6.3%

tsql 29.3% 6.2%

Figure 4. Percentage of unique context vectors in corpora associ-
ated with > 1 formatting directive.

ent subset of features but we present all features computed
during training together, broken into three logical subsets.

3.3.1 Token Type and Matching Token Features
At token index i within each document, context feature-
vector Xi contains the following features related to previous
tokens in the same document.

1. ti�1, token type of previous token
2. ti, token type of current token
3. Is ti�1 the first token on a line?
4. Is paired token for ti the first on a line?
5. Is paired token for ti the last on a line?

Feature #3 allows the model to distinguish between the fol-
lowing two different ANTLR grammar rule styles at "a, when
ti=DIGIT, using two different contexts.

DECIMAL : DI

"a
GIT+ ;

"b
DECIMAL

: DI

"a
GIT+

;
"b

Exemplars for the two cases are:

(X=[:, RULEREF, false, . . .], w=(sp, 1), h=none)
(X 0=[:, RULEREF, true, . . .], w0=(sp, 3), h0=none)

where RULEREF is type(DIGIT), the token type of rule
reference DIGIT from the ANTLR meta-grammar. Without
feature #3, there would be a single context associated with
two different formatting directives.

Features #4 and #5 yield different contexts for common
situations related to paired symbols, such as { and }, that
require different formatting. For example, at position "b, the
model knows that : is the paired previous symbol for ;
(details below) and distinguishes between the styles. On the
left, : is not the first token on a line whereas : does start the
line for the case on the right, giving two different exemplars:

(X=[. . . , false, false], w=(sp, 1), h=none)
(X 0=[. . . , true, false], w0=(nl, 1), h0=(align ,:))

Those features also allow the model to distinguish between
the first two following Java cases where the paired symbol
for } is sometimes not at the end of the line in short methods.

void reset() {x=0;} void reset() {
x=0;

}

void reset() {
x=0;}

Without features #4-#5, the formatter would yield the third.
Determining the set of paired symbols is nontrivial, given

that the training can make no assumptions about the language
it is formatting. We designed an algorithm, pairs in Function
4, that analyzes the parse trees for all documents in the
corpus and computes plausible token pairs for every non-leaf
node (grammar rule production) encountered. The algorithm
relies on the idea that paired tokens are token literals, occur
as siblings, and are not repeated siblings. Grammar authors
also do not split paired token references across productions.
Instead, authors write productions such as these ANTLR
rules for Java:

expr : ID ’[’ expr ’]’ | ... ;
type : ID ’<’ ID (’,’ ID)* ’>’ | ... ;

that yield subtrees with the square and angle brackets as
direct children of the relevant production. Repeated tokens
are not plausible pair elements so the commas in a generic
Java type list, as in T<A,B,C>, would not appear in pairs
associated with rule type. A single subtree in the corpus
with repeated commas as children of a type node would
remove comma from all pairs associated with rule type.
Further details are available in Function 4 (see also source
CollectTokenPairs.java). The algorithm neatly identifies pairs
such as (?, :) and ([,]), and ((,)) for Java expressions
and (enum, }), (enum, {), and ({, }) for enumerated type
declarations. During formatting, paired (Function 5) returns
the paired symbols for ti.

3.3.2 List Membership Features
Most computer languages have lists of repeated elements
separated or terminated by a token literal, such as statement
lists, formal parameter lists, and table column lists. The next
group of features indicates whether ti is a component of a list
construct and whether or not that list is split across multiple
lines (“oversize”).

6. Is leftancestor(ti) a component of an oversize list?
7. leftancestor(ti) component type within list from

{prefix token, first member, first separator, member,
separator, suffix token}

With these two features, context vectors capture not only two
different overall styles for short and oversize lists but how
the various elements are formatted within those two kinds
of lists. Here is a sample oversize Java formal parameter list
annotated with list component types:

143

formalParameters:1

variableDeclaratorId:1

x

,

variableDeclaratorId:1

int

(

primitiveType:1

typeSpec:2

formalParameterList:1

primitiveType:1

)

formalParameter:1

int

y

formalParameter:1

typeSpec:2

Repeated siblings
with separator

suffixprefix

1st member member

separator

Figure 5. Formal Args Parse Tree void f(int x, int y).

Only the first member of a list is differentiated; all other
members are labeled as just plain members because their
formatting is typically the same. The exemplars would be:

(X=[. . . , true, prefix], w=none , h=none)
(X=[. . . , true, first member], w=none , h=none)
(X=[. . . , true, first separator], w=none , h=none)
(X=[. . . , true, member], w=(nl , 1), h=(align, first arg))
(X=[. . . , true, separator], w=none , h=none)
(X=[. . . , true, member], w=(nl , 1), h=(align, first arg))
(X=[. . . , true, suffix], w=none , h=none)

Even for short lists on one line, being able to differen-
tiate between list components lets training capture differ-
ent but equally valid styles. For example, some ANTLR
grammar authors write short parenthesized subrules like
(ID|INT|FLOAT) but some write (ID | INT | FLOAT).

As with identifying token pairs, CODEBUFF must identify
the constituent components of lists without making assump-
tions about grammars that hinder generalization. The intu-
ition is that lists are repeated sibling subtrees with a sin-
gle token literal between the 1st and 2nd repeated sibling,
as shown in Figure 5. Repeated subtrees without separators
are not considered lists. Training performs a preprocessing
pass over the parse tree for each document, tagging the to-
kens identified as list components with values for features
#6- #7. Tokens starting list members are identified as the left-
most leaves of repeated siblings (formalParameter in Figure
5). Prefix and suffix components are the tokens immediately
to the left and right of list members but only if they share a
common parent.

The training preprocessing pass also collects statistics
about the distribution of list text lengths (without whitespace)
of regular and oversize lists. Regular and oversize list lengths
are tracked per (r, c, sep) combination for rule subtree root
type r, child node type c, and separator token type sep; e.g.,
(r, c, sep)=(formalParameterList, formalParameter,‘,’)
in Figure 5. The separator is part of the tuple so that ex-
pressions can distinguish between different operators such
as = and *. Children of binary and ternary operator subtrees
satisfy the conditions for being a list, with the operator as
separator token(s). For each (r, c, sep) combination, training

tracks the number of those lists and the median list length,
(r, c, sep) 7! (n,median).

3.3.3 Identifying Oversize Lists During Formatting
As with training, the formatter performs a preprocessing pass
to identify the tokens of list phrases. Whereas training iden-
tifies oversize lists simply as those split across lines, format-
ting sees documents with all whitespace squeezed out. For
each (r, c, sep) encountered during the preprocessing pass,
the formatter consults a mini-classifier to predict whether that
list is oversize or not based upon the list string length, ll. The
mini-classifier compares the mean-squared-distance of ll to
the median for regular lists and the median for oversize (big)
lists and then adjusts those distances according to the like-
lihood of regular vs oversize lists. The a priori likelihood
that a list is regular is p(reg) = nreg/(nreg + nbig), giv-
ing an adjusted distance to the regular type list as: distreg =

(ll�medianreg)
2 ⇤ (1� p(reg)). The distance for oversize

lists is analogous.
When a list length is somewhere between the two medi-

ans, the relative likelihoods of occurrence shift the balance.
When there are roughly equal numbers of regular and over-
size lists, the likelihood term effectively drops out, giving just
mean-squared-distance as the mini-classifier criterion. At the
extreme, when all (r, c, sep) lists are big, p(big) = 1, forcing
distbig to 0 and, thus, always predicting oversize.

When a single token ti is a member of multiple lists, train-
ing and formatting associate ti with the longest list subphrase
because that yields the best formatting, as evaluated manu-
ally across the corpora. For example, the expressions within
a Java function call argument list are often themselves lists.
In f(e1,...,a+b), token a is both a sibling of f’s argument
list but also the first sibling of expression a+b, which is also
a list. Training and formatting identify a as being part of the
larger argument list rather than the smaller a+b. This choice
ensures that oversize lists are properly split. Consider the op-
posite choice where a is associated with list a+b. In an over-
size argument list, the formatter would not inject a newline
before a, yielding poor results:

f(e1,
..., a+b)

Because list membership identification occurs in a top-down
parse-tree pass, associating tokens with the largest construct
is a matter of latching the first list association discovered.

3.3.4 Parse-Tree Context Features
The final features provide parse-tree context information:

8. childindex (ti)
9. rightancestor(ti�1)

10. leftancestor(ti)
11. childindex (leftancestor(ti))
12. parent1(leftancestor(ti))
13. childindex (parent1(leftancestor(ti)))
14. parent2(leftancestor(ti))

144

15. childindex (parent2(leftancestor(ti)))
16. parent3(leftancestor(ti))
17. childindex (parent3(leftancestor(ti)))
18. parent4(leftancestor(ti))
19. childindex (parent4(leftancestor(ti)))
20. parent5(leftancestor(ti))
21. childindex (parent5(leftancestor(ti)))

Here the childindex (p) is the 0-based index of node p
among children of parent(p), childindex (ti) is shorthand
for childindex (leaf (ti)), and leaf (ti) is the leaf node asso-
ciated with ti. Function childindex (p) has a special case
when p is a repeated sibling. If p is the first element,
childindex (p) is the actual child index of p within the chil-
dren of parent(p) but is special marker * for all other re-
peated siblings. The purpose is to avoid over-specializing the
context vectors to improve generality. These features also use
function parent i(p), which is the ith parent of p; parent1(p)
is synonymous with the direct parent parent(p).

The child index of ti, feature #8, gives the necessary con-
text information to distinguish the alignment token between
the following two ANTLR lexical rules at the semicolon.

BooleanLiteral
: ’true’
| ’false’
;

fragment
DIGIT

: [0-9]
;

On the left, the ; token is child index 3 but 4 on the right,
yielding different contexts, X and X 0, to support differ-
ent alignment directives for the two cases. Training collects
exemplars (X, (align, 0, 1)) and (X 0, (align, 0, 2)), which
aligns ; with the colon in both cases.

Next, features rightancestor(ti�1) and leftancestor(ti)
describe what phrase precedes ti and what phrase ti starts.
The rightancestor is analogous to leftancestor and is the
oldest ancestor of ti whose rightmost leaf is ti (or parent(ti)
if there is no such ancestor). For example, at ti=y in x=1;
y=2; the right ancestor of ti�1 and the left ancestor of ti are
both “statement” subtree roots.

Finally, the parent and child index features capture context
information about highly nested constructs, such as:

if (x) { }
else if (y) { }
else if (z) { }
else { }

Each else token requires a different formatting directive for
alignment, as shown in Figure 6; e.g., (align, 1, 3) means
“jump up 1 level from leftancestor(ti) and align with left-
most leaf of child 3 (token else).” To distinguish the cases,
the context vectors must be different. Therefore, training col-
lects these partial vectors with features #10-15:

X=[. . . , stat, 0, blockStat, *, block, 0, . . .]
X=[. . . , stat, *, stat, 0, blockStat, *, . . .]
X=[. . . , stat, *, stat, *, stat, 0, . . .]

)

expression:1 block:1x

(

(

elseif

block:1

statement:3

block:1{

)

expression:1 statement:1

}

else statement:3block:1

parExpression:1

parExpression:1

statement:3

)

statement:1

y

}

{

else

(

primary:5

}

primary:5

if

{

{

{

statement:1

}

statement:1ifexpression:1

parExpression:1

block:1

z

}primary:5

blockStatement:2

(align,0,0)

(align,1,0)
(align,1,3)

Figure 6. Alignment directives for nested if-else statements.

where stat abbreviates statement:3 and blockStat abbrevi-
ates blockStatement:2. All deeper else clauses also use di-
rective (align, 1, 3).

Training is complete once the software has computed an
exemplar for each token in all corpus files. The formatting
model is the collection of those exemplars and an associated
classifier that predicts directives given a feature vector.

3.4 Predicting Formatting Directives
CODEBUFF’s kNN classifier uses a fixed k = 11 (chosen
experimentally in Section 4) and an L0 distance function (ra-
tio of number of components that differ to vector length)
but with a twist on classic kNN that accentuates feature
vector distances in a nonlinear fashion. To make predic-
tions, a classic kNN classifier computes the distance from
unknown feature vector X to every Xj vector in the exem-
plars, (X, Y), and predicts the category, y, occurring most
frequently among the k exemplars nearest X .

The classic approach works very well in Euclidean space
with quantitative feature vectors but not so well with an L0

distance that measures how similar two code-phrase contexts
are. As the L0 distance increases, the similarity of two con-
text vectors drops off dramatically. Changing even one fea-
ture, such as earliest left ancestor (kind of phrase), can mean
very different contexts. This quick drop off matters when
counting votes within the k nearest Xj . At the extreme, there
could be one exemplar where X = Xj at distance 0 and
10 exemplars at distance 1.0, the maximum distance. Clearly
the one exact match should outweigh 10 that do not match
at all, but a classic kNN uses a simple unweighted count of
exemplars per category (10 out of 11 in this case). Instead of
counting the number of exemplars per category, our variation
sums 1 � 3

p
L0(X,Xj) for each Xj per category. Because

distances are in [0..1], the cube root nonlinearly accentuates
differences. Distances of 0 count as weight 1, like the clas-
sic kNN, but distances close to 1.0 count very little towards
their associated category. In practice, we found feature vec-
tors more distant than about 15% from unknown X to be too
dissimilar to count. Exemplars at distances above this thresh-
old are discarded while collecting the k nearest neighbors.

145

The classfier function uses features #1-#10, #12 to make
ws predictions and #2, #6-#21 for hpos; hpos predictions
ignore Xj not associated with tokens starting a line.

3.5 Formatting a Document
To format document d, the formatter, Function 6, first squeezes
out all whitespace tokens and line/column information from
the tokens of d and then iterates through d’s remaining to-
kens, deciding what whitespace to inject before each token.
At each token, the formatter computes a feature vector for
that context and asks the model to predict a formatting di-
rective (whereas training examines the whitespace to deter-
mine the directive). The formatter uses the information in
the formatting directive to compute the number of newline
and space characters to inject. The formatter treats the di-
rectives like bytecode instructions for a simple virtual ma-
chine: {(nl , n), (sp, n), none , (align, ancestor�, child),
(indent , ancestor�, child), align , indent}.

As the formatter emits tokens and injects whitespace, it
tracks line and column information so that it can annotate
tokens with this information. Computing features #3-5 at
token ti relies on line and column information for tj for
some j < i. For example, feature #3 answers whether ti�1 is
the first token on the line, which requires line and column
information for ti�1 and ti�2. Because of this, predicting
the whitespace preceding token ti is a (fast) function of the
actions made previously by the formatter. After processing
ti, the file is formatted up to and including ti.

Before emitting whitespace in front of token ti, the for-
matter emits any comments found between ti�1 and ti in
the source code. (All ANTLR parsers can access comments
and whitespace interspersed among “real” tokens.) CODE-
BUFF does not attempt to align comments. As a temporary
workaround, our current version just replicates the whites-
pace found in front of each comment. This is the one case
where the formatter looks at the original file’s whitespace.
Otherwise, the formatter computes all whitespace generated
in between tokens. To ensure single-line comments are fol-
lowed by a newline, users of CODEBUFF can specify the token
type for single-line comments as a failsafe.

4. Empirical Results
The primary question when evaluating a code formatter is
whether it consistently produces high quality output, and we
begin by showing experimentally that CODEBUFF does so.
Next, we investigate the key factors that influence CODE-
BUFF’s statistical model and, indirectly, formatting quality:
the way a grammar describes a language, corpus size/consis-
tency, and parameter k of the kNN model. We finish with a
discussion of CODEBUFF’s complexity and performance.

4.1 Research Method: Quantifying Formatting Quality
We need to accurately quantify code formatter quality with-
out human evaluation. A metric helps to isolate issues with

the model (and subsequently improve it) as well as report
its efficacy in an objective manner. We propose the follow-
ing measure. Given corpus D that is perfectly consistently
formatted, CODEBUFF should produce the identity transfor-
mation for any document d 2 D if trained on a corpus sub-
set D \ {d}. This leave-one-out cross-validation allows us to
use the corpus for both training and for measuring formatter
quality. (See Section 5 for evidence of CODEBUFF’s general-
ity.) For each document, the distance between original d and
formatted d0 is an inverse measure of formatting quality.

A naive similarity measure is the edit distance (Leven-
shtein Distance [7]) between d0 and d, but it is expensive to
compute and will over-accentuate minor differences. For ex-
ample, a single indentation error made by the formatter could
mean the entire file is shifted too far to the right, yielding a
very high edit distance. A human reviewer would likely con-
sider that a small error, given that the code looks exactly right
except for the indentation level. Instead, we quantify the doc-
ument similarity using the aggregate misclassification rate, in
[0..1], for all predictions made while generating d0:

error =

n_ws_errors+ n_hpos_errors
n_ws_decisions+ n_hpos_decisions

A misclassification error occurs when the kNN model pre-
dicts a formatting directive for d0 at token ti that dif-
fers from the actual formatting found in the original d
at ti. The formatter predicts whitespace for each ti so
n_ws_decisions = |d| = |d0|, the number of real tokens
in d. For each ws = (nl, _) prediction, the formatter predicts
hpos so n_hpos_decisions  |d|. An error rate of 0 indi-
cates that d0 is identical to d and an error rate of 1 indicates
that every prediction made during formatting of d0 would
yield formatting that differs from that found in d. Format-
ting directives that differ solely in the number of spaces or in
the relative token identifier count as misclassifications; e.g.,
(sp, 1) 6= (sp, 2) and (align, i , j) 6= (align, i 0, j 0). We con-
sider this error rate an acceptable proxy for human opinion,
albeit imperfect.

4.2 Corpora
We selected three very different languages—ANTLR gram-
mars, Java, and SQL—and used the following corpora (stored
in CODEBUFF’s [11] corpus directory).

• antlr. A subset of 12 grammars from ANTLR’s gram-
mar repository, manually formatted by us.

• st. All 59 Java source files for StringTemplate.
• guava. All 511 Java source files for Google’s Guava.
• sql_noisy. 36 SQL files taken from a github reposi-

tory.1 The SQL corpus was groomed and truncated so it
was acceptable to both SQLite and TSQL grammars.

• sql. The same 36 SQL files as formatted using Intellij
IDE; some manual formatting interventions were done to
fix Intellij formatting errors.

1 https://github.com/mmessano/SQL

146

As part of our examination of grammar invariance (details
below), we used 2 different Java grammars and 2 different
SQL grammars taken from ANTLR’s grammar repository:

• java. A Java 7 grammar.
• java8. A transcription of the Java 8 language specifica-

tion into ANTLR format.
• sqlite. A grammar for the SQLite variant of SQL.
• tsql. A grammar for the Transact-SQL variant of SQL.

ja
va

st
n=

59
ja

va
8

st
n=

59
ja

va
gu

av
a

n=
51

1
ja

va
8

gu
av

a
n=

51
1 an

tlr
n=

12 sq
lite

n=
36 ts

ql
n=

36
sq

lite
no

isy
n=

36
ts

ql
no

isy
n=

36

Grammar and corpus size

0.00

0.05

0.10

0.15

0.20

0.25

M
is

cl
as

si
fic

at
io

n
E

rr
or

R
at

e

Figure 7. Standard box-plot of leave-one-out validation error rate
between formatted document d0 and original d.

4.3 Formatting Quality Results
Our first experiment demonstrates that CODEBUFF can faith-
fully reproduce the style found in a consistent corpus. Details
to reproduce all results are available in a README.md [11]. Fig-
ure 7 shows the formatting error rate, as described above.
Lower median error rates correspond with higher-quality
formatting, meaning that the formatted files are closer to
the original. Manual inspection of the corpora confirms that
consistently-formatted corpora indeed yield better results.
For example, median error rates (17% and 19%) are higher
using the two grammars on the sql_noisy corpus versus
the cleaned up sql corpus. The guava corpus has extremely
consistent style because it is enforced programmatically and
consequently CODEBUFF is able to reproduce the style with
high accuracy using either Java grammar. The antlr corpus
results have a high error rate due to some inconsistencies
among the grammars but, nonetheless, formatted grammars
look good except for a few overly-long lines.

4.4 Grammar Invariance
Figure 7 also gives a strong hint that CODEBUFF is gram-
mar invariant, meaning that training models on a single cor-
pus but with different grammars gives roughly the same for-
matting results. For example, the error rates for the st cor-
pus trained with java and java8 grammars are roughly the
same, indicating that CODEBUFF’s overall error rate (similar-
ity of original/formatted documents) does not change when

we swap out the grammar. The same evidence appears for the
other corpora and grammars. The overall error rate could hide
large variation in the formatting of individual files, however,
so we define grammar invariance as a file-by-file comparison
of normalized edit distances.

Definition 4.1. Given models FD,G and FD,G0 derived from
grammars G and G0 for a single language, L(G) = L(G0

), a
formatter is grammar invariant if the following holds for any
document d: format(FD,G , d) format(FD,G0 , d)  ✏ for
some suitably small normalized edit distance ✏.

Definition 4.2. Let operator d1 d2 be the normalized
edit distance between documents d1 and d2 defined by the
Levenshtein Distance [7] divided by max(len(d1), len(d2)).

The median edit distances between formatted files (using
leave-one-out validation) from 3 corpora provide strong evi-
dence of grammar invariance for Java but less so for SQL:

• 0.001 for guava corpus with java and java8 grammars
• 0.008 for st corpus with java and java8 grammars
• 0.099 for sql corpus with sqlite and tsql grammars

The “average” difference between guava files formatted with
different Java grammars is 1 character edit per 1000 charac-
ters. The less consistent st corpus yields a distance of 8 edits
per 1000 characters. A manual inspection of Java documents
formatted using models trained with different grammars con-
firms that the structure of the grammar itself has little to no
effect on the formatting results, at least when trained on the
context features defined in 3.3.

The sql corpus shows a much higher difference between
formatted files, 99 edits per 1000 characters. Manual inspec-
tion shows that both versions are plausible, just a bit differ-
ent in nl prediction. Newlines trigger indentation, leading
to bigger whitespace differences. One reason for higher edit
distances could be that the noise in the less consistent SQL
corpus amplifies any effect that the grammar has on format-
ting. More likely, the increased grammar sensitivity for SQL
has to do with the fact that the sqlite and tsql grammars
are actually for two different languages. The TSQL language
has procedural extensions and is Turing complete; the tsql
grammar is 2.5x bigger than sqlite. In light of the differ-
ent SQL dialects and noisier corpus, a larger difference be-
tween formatted SQL files is unsurprising and does not rule
out grammar invariance.

4.5 Effects of Corpus Size
Prospective users of CODEBUFF will ask how the size of the
corpus affects formatting quality. We performed an experi-
ment to determine: (i) how many files are needed to reach the
median overall error rate and (ii) whether adding more and
more files confuses the kNN classifier. Figure 8 summarizes
the results of an experiment comparing the median error rate
for randomly-selected corpus subsets of varying sizes across
different corpora and grammars. Each data point represents

147

50 trials at a specific corpus size. The error rate quickly drops
after about 5 files and then asymptotically approaches the
median error rate shown in Figure 7. This graph suggests
a minimum corpus size of about 10 files and provides evi-
dence that adding more (consistently formatted) files neither
confuses the classifier nor improves it significantly.

0 5 10 15 20 25 30
Number of training files in sample corpus subset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ed

ia
n

E
rr

or
ra

te
fo

r5
0

tri
al

s

sqlite
antlr
java st
java8 guava
java8 st
tsql
java guava

Figure 8. Effect of corpus size on median leave-one-out valida-
tion error rate using randomly-selected corpus subsets.

4.6 Optimization and Stability of Model Parameters
Choosing a k for a kNN model is more of an art but k =

p
N

for N exemplars is commonly used. Through exhaustive
manual review of formatted files, we instead arrived at a fixed
k = 11 and then verified its suitability by experiment. Fig-
ure 9 shows the effect of varying k on the median error rate
across a selection of corpora and grammars; k ranged from 1
to 99. This graph supports the conclusion that a formatter can
make accurate decisions by comparing the context surround-
ing ti to very few model exemplars. Moreover, formatter ac-
curacy is very stable with respect to k; even large changes in
k do not alter the error rate very much.

0 20 40 60 80 100
k nearest neighbors

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

M
ed

ia
n

er
ro

rr
at

e

java st
java8 st
antlr
sqlite
tsql

Figure 9. Effect of k on median leave-one-out error rate.

4.7 Worst-Case Complexity
Collecting all exemplars to train our kNN FD,G model re-
quires two passes over the input. The first pass walks the
parse tree for each d 2 D, collecting matching token pairs
(Section 3.3.1) and identifying list membership (Section
3.3.2). The size of a single parse tree is bounded by the
size of the grammar times the number of tokens in the doc-
ument, |G| ⇥ |d| for document d (the charge per token is a
tree depth of at most |P | productions of G). To make a pass
over all parse trees for the entire corpus, the time complexity
is |G|⇥N , so in O(N) for N total tokens in the corpus.

The second pass walks each token ti 2 d for all d 2 D, us-
ing information computed in the first pass to compute feature
vectors and capture whitespace as ws and hpos formatting
directives. There are m features to compute for each of N
tokens. Most of the features require constant time, but com-
puting the earliest ancestors and identifying tokens for in-
dentation and alignment might walk the depth of the parse
tree in the worst case for a cost of O(log(|G|⇥ |d|)) per fea-
ture per token. For an average document size, a feature costs
O(log(|G|⇥N/|D|)). Computing all m features and captur-
ing whitespace for all documents costs

O(m⇥N ⇥ log(|G|⇥N/|D|)) =

O(N ⇥m⇥ (log(|G|) + log(N)� log(|D|)))

which is in O(N logN). Including the first pass over all
parse trees adds a factor of N but does not change the overall
worst-case time complexity for training.

Formatting a document is much more expensive than
training. For each token in a document, the formatter requires
at least one ws classifier function execution and possibly a
second for hpos . Each classifier function execution requires
the feature vector X computation cost per the above, but the
cost is dominated by the comparison of X to every Xj 2 X
and sorting those results by distance to find the k nearest
neighbors. For n = |d| tokens in a file to be formatted, the
overall complexity is quadratic, O(n ⇥ N logN). For an
average document size of n = N/|D|, formatting a doc-
ument costs O(N2

logN). Box formatters are also usually
quadratic; streaming formatters are linear (See Section 6).

4.8 Expected Performance
CODEBUFF is instrumented to report single-threaded CPU
run-time for training and formatting time. We report a me-
dian 1.5s training time for the (overly-large by an order mag-
nitude) guava corpus (511 files, 143k lines) after parsing
documents using the java grammar and a training time of
1.8s with the java8 grammar.2 The antlr corpus, with only
12 files, is trained within 72ms.

2 Experiments run 20 times on an iMac17,1 OS 10.11.5, 4GHz Intel Core
i7 with Java 8, heap/stack size 4G/1M; we ignore first 5 measurements to
account for warmup time. Details to reproduce in github repo.

148

Because kNN uses the complete list of exemplars as an
internal representation, the memory footprint of CODEBUFF

is substantial. For each of N tokens in the corpus, we track
m features and two formatting directives (each packed into
a single word). The size complexity is O(N) but with a
nontrivial constant. For the guava corpus, the profiler shows
2.5M Xj 2 X feature vectors, consuming 275M RAM.
Because CODEBUFF keeps all corpus text in memory for
testing purposes, we observe an overall 1.7G RAM footprint.

For even a modest sized corpus, the number of tokens,
N , is large and a naive kNN classifier function implementa-
tion is unusably slow. Ours uses an index to narrow the near-
est neighbors search space and a cache of prediction func-
tion results to make the performance acceptable. To provide
worst-case formatting speed figures, CODEBUFF formats the
biggest file (LocalCache.java) in the guava library (22,674 to-
kens, 5022 lines) in median times of 2.7s (java) and 2.2s
(java8). At ~2300 lines/s even for such a large training cor-
pus, CODEBUFF is usable in IDEs and other applications. Us-
ing the more reasonably-sized antlr corpus, formatting the
1777 line Java8.g4 takes just 70ms (25k lines/s).

5. Test of Generality
As a test of generality, we solicited a grammar and cor-
pus for an unfamiliar language, Quorum3 by Andreas Stefik,
and trained CODEBUFF on that corpus. The first look at the
grammar and corpus for both the authors and the model oc-
curred during the preparation of this manuscript. We dropped
about half of the corpus files randomly to simulate a more
reasonably-sized training corpus but did not modify any files.

Most files in the corpus result in plausibly formatted code,
but there are a few outlier files, such as HashTable.quorum. For
example, the following function looks fine except that it is
indented way too far to the right in the formatted output:

action RemoveKey(Key key) returns Value
repeat while node not= undefined

if key:Equals(node:key)
if previous not= undefined

previous:next = node:next
else

array:Set(index, node:next)
end

...
end
return undefined

end

The median misclassification error rate for Quorum is very
low, 4%, on a par with the guava model, indicating that it is
consistent and that CODEBUFF captures the formatting style.

6. Related Work
The state of the art in language-parametric formatting stems
from two sources: Coutaz [3] and Oppen [10]. Coutaz intro-
3 https://www.quorumlanguage.com

duced the “Box” as a basic two-dimensional layout mecha-
nism and all derived work elaborates on specifying the map-
ping from syntax (parse) trees to Box expressions more ef-
fectively (in terms of meta-program size and expressive-
ness) [4, 12–14]. Oppen introduced the streaming format-
ting algorithm in which alignment and indentation operators
are injected into a token stream (coming from a syntax tree
serialization or a lexer token stream). Derivative and later
work [1, 2, 18] elaborates on specifying how and when to
inject these tokens for different languages in different ways
and in different technological spaces [6].

Oppen’s streams shine for their simplicity and efficiency
in time and memory, while the expressivity of Coutaz’ Boxes
makes it easier to specify arbitrary formatting styles. The
expressivity comes at the cost of building an intermediate
representation and running a specialized constraint solver.

Conceptually CODEBUFF derives from the Oppen school
most, but in terms of expressivity and being able to capture
“naturally occurring” and therefore hard to formalize for-
matting styles, CODEBUFF approaches the power of Coutaz’
Boxes. The reason is that CODEBUFF matches token context
much like the algorithms that map syntax trees to Box ex-
pressions. CODEBUFF can, therefore, seamlessly learn to spe-
cialize for even more specific situations than a software lan-
guage engineer would care to express. At the same time, it
uses an algorithm that simply injects layout directives into a
token stream, which is very efficient. There are limitations,
however (detailed in Section 3).

Language-parametric formatters from the Box school are
usually combined with default formatters, which are stati-
cally constructed using heuristics (expert knowledge). The
default formatter is expected to guess the right formatting
rule in order to relieve the language engineer from having to
specify a rule for every language construct (like CODEBUFF

does for all constructs). To do this, the input grammar is ana-
lyzed for “typical constructs” (such as expressions and block
constructs), which are typically formatted in a particular way.
The usefulness of default formatters is limited though. We
have observed engineers mapping languages to Box com-
pletely manually, while a default formatter was readily avail-
able. If CODEBUFF is not perfect, at least it generalizes the
concept of a default formatter by learning from input sen-
tences and not just the grammar of a language. This differ-
ence is the key benefit of the machine learning approach;
CODEBUFF could act as a more intelligent default formatter
in existing formatting pipelines.

PGF [1] by Bagge and Hasu is a rule-based system to
inject pretty printing directives into a stream. The meta-
grammar for these rules (which the language engineer must
write) is conceptually comparable to the feature set that
CODEBUFF learns. The details of the features are different
however, and these details matter greatly to the efficacy of
the learner. The interplay between the expressiveness of a
meta-grammar for formatting rules and the features CODE-

149

BUFF uses during training is interesting to observe: we are
characterizing the domain of formatting from different ends.

Since CODEBUFF automatically learns by example, related
work that needs explicit formalizations is basically incom-
parable from a language engineering perspective. We could
only compare the speed of the derived formatters and the
quality of the formatted output. It would be possible to com-
pare the default grammar-based formatters to see how many
of their rules are useful compared to CODEBUFF, but (i) this is
completely unfair because the default formatters do not have
access to input examples and (ii) default formatters are con-
structed in a highly arbitrary manner so there is no lesson to
learn other than their respective designer’s intuitions.

Aside from the actual functionality of formatting text, re-
lated work has extended formatting with “high fidelity” (not
losing comments) [16, 17] and partial formatting (introduc-
ing a new source text in an already formatted context) [5].
CODEBUFF copies comments into the formatted output but
partial formatting is outside the scope of the current contri-
bution; CODEBUFF could be extended with such functionality.

7. Future Work
The relative feature weights in the current kNN classifier
were determined through trial and error so we anticipate
swapping in a random forest classifier, which automatically
determines the importance (weight) of each feature. Random
forest classifiers are also much more efficient than kNN clas-
sifiers. We anticipate introducing new classifier features to
rectify the few incorrectly-formatted files.

8. Conclusion
CODEBUFF is a step towards a universal code formatter that
uses machine learning to abstract formatting rules from
a representative corpus. Current approaches require com-
plex pattern-formatting rules written by a language expert
whereas input to CODEBUFF is just a grammar, corpus, and
indentation size. Experiments show that training requires
about 10 files and that resulting formatters are fast and highly
accurate for three languages. Further, tests on a previously-
unseen language and corpus show that, without modification,
CODEBUFF generalized to a 4th language. Formatting results
are largely insensitive to language-preserving changes in the
grammar and our kNN classifier is highly stable with respect
to changes in model parameter k. Based on these results, we
look forward to many more applications of machine learning
in software language engineering.

9. Appendix
This section collects all of CODEBUFF’s key algorithms refer-
enced in the main body.

Function 1: train(D,G, indentSize)! model FD,G

X := []; W := []; H := []; j := 1;
foreach document d 2 D do

tokens := tokenize(d);
tree := parse(tokens);
foreach ti 2 tokens do

X[j] := compute context feature vector for ti, tree;
W [j] := capture_ws(ti);
H[j] := capture_hpos(ti, indentSize);
j := j + 1;

return (X, W,H, indentSize);

Function 2: capture_ws(ti)! w 2 ws
newlines := num newlines between ti�1 and ti;
if newlines > 0 then return (nl , newlines);
col� := ti.col - (ti�1.col + len(text(ti�1)));
return (ws, col�);

Function 3: capture_hpos(ti, indentSize)! h 2 hpos
ancestor := leftancestor(ti);
if 9 ancestor w/child aligned with ti.col then
halign := (align, ancestor�, childindex)

with smallest ancestor� & childindex;
if 9 ancestor w/child at ti.col + indentSize then
hindent := (indent , ancestor�, childindex)

with smallest ancestor� & childindex;
if halign and hindent not nil then

return directive with smallest ancestor�;
if halign not nil then return halign;
if hindent not nil then return hindent;
if ti indented from previous line then return indent;
return align;

Function 4: pairs(Corpus D)! map node 7! set<(s, t)>
pairs := map of node 7! set<tuples>;
repeats := map of node 7! set<token types>;
foreach d 2 D do

foreach non-leaf node r in parse(d) do
literals := {t | parent(t) = r, t is literal token};
add {(ti, tj) | i < j 8 ti, tj 2 literals} to pairs[r];
add {ti | 9 ti = tj , i 6= j} to repeats[r];

delete pair (ti, tj) 2 pairs[r] if ti or tj 2 repeats[r] 8 r;
return pairs;

150

Function 5: paired(pairs, token ti)! t0

mypairs := pairs[parent(t)];
viable := {s | (s, t) 2 mypairs, s 2 siblings(t)};
if |viable| = 1 then ttype := viable[0];
else if 9(s, t)| s, t are common pairs then ttype := s;
else if 9(s, t)| s, t are single-char literals then ttype := s;
else ttype := viable[0]; // choose first if still ambiguous
matching := [tj | tj = ttype, j < i, 8 tj 2 siblings(ti)];
return last(matching);

Function 6: format(FD,G = (X,W,H, indentSize), d)
line := col := 0;
d := d with whitespace tokens, line/column info removed;
foreach ti 2 d do

emit any comments to left of ti;
Xi := compute context feature vector at ti;
ws := predict directive using Xi and X, W ;
newlines := sp := 0;
if ws = (nl, n) then newlines := n;
else if ws = (sp, n) then sp := n;
if newlines > 0 then // inject newline and align/indent

emit newlines ‘\n’ characters;
line += newlines; col := 0;
hpos := predict directive using Xi and X, H;
if hpos = (_, ancestor�, child) then
tj = token relative to ti at ancestor�, child;
col := tj .col;
if hpos = (indent, _, _) then col += indentSize;
emit col spaces;

else // plain align or indent
tj := first token on previous line;
col := tj .col;
if hpos = indent then col += indentSize;
emit col spaces;

end
else

col += sp; emit sp spaces; // inject spaces
ti.line = line; // set ti location
ti.col = col;
emit text(ti);
col += len(text(ti))

References
[1] A. H. Bagge and T. Hasu. A pretty good formatting pipeline. In

International Conferance on Software Language Engineering
(SLE’13), volume 8225 of LNCS. Springer, Oct. 2013.

[2] O. Chitil. Pretty printing with lazy dequeues. ACM TOPLAS,
27(1):163–184, Jan. 2005. ISSN 0164-0925.

[3] J. Coutaz. The Box, a layout abstraction for user interface
toolkits. CMU-CS-84-167, Carnegie Mellon University, 1984.

[4] M. de Jonge. Pretty-printing for software reengineering. In
Proceedings of ICSM 2002, pages 550–559. IEEE Computer
Society Press, Oct. 2002.

[5] M. de Jonge. Pretty-printing for software reengineering. In
ICSM 2002, 3-6 October 2002, Montreal, Quebec, Canada,
pages 550–559, 2002.

[6] I. Kurtev, J. Bézivin, and M. Aksit. Technological spaces: An
initial appraisal. In International Symposium on Distributed
Objects and Applications, DOA 2002, 2002.

[7] V. I. Levenshtein. Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals. Soviet Physics Doklady, 10:
707, Feb. 1966.

[8] S. McConnel. Code Complete. Microsoft Press, 1993.
[9] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneider-

man. Program indentation and comprehensibility. ACM, 26
(11):861–867, 1983.

[10] D. C. Oppen. Prettyprinting. ACM TOPLAS, 2(4):465–483,
1980. ISSN 0164-0925.

[11] T. Parr, F. Zhang, and J. Vinju. Codebuff, June 2016. URL
https://github.com/antlr/codebuff/tree/1.5.1.

[12] M. van den Brand and E. Visser. Generation of formatters for
context-free languages. ACM Trans. Softw. Eng. Methodol., 5
(1):1–41, Jan. 1996.

[13] M. G. van den Brand, A. T. Kooiker, J. J. Vinju, and N. P.
Veerman. A language independent framework for context-
sensitive formatting. In CSMR 2006, pages 10–pp. IEEE,
2006.

[14] M. G. J. van den Brand and E. Visser. Generation of formatters
for context-free languages. ACM Trans. Softw. Eng. Methodol.,
5(1):1–41, 1996. ISSN 1049-331X. .

[15] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A.
de Jong, M. de Jonge, T. Kuipers, P. Klint, P. A. Olivier,
J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
ASF+SDF Meta-Environment: a Component-Based Language
Development Environment. In CC ’01, volume 2027 of LNCS.
Springer-Verlag, 2001.

[16] J. Vinju. Analysis and Transformation of Source Code by
Parsing and Rewriting. PhD thesis, U. van Amsterdam, 2005.

[17] D. G. Waddington and B. Yao. High-fidelity c/c++ code
transformation. Electron. Notes Theor. Comput. Sci., 141(4):
35–56, Dec. 2005. ISSN 1571-0661.

[18] P. Wadler. A prettier printer. In Journal of Functional Pro-
gramming, pages 223–244. Palgrave Macmillan, 1998.

151

