
Adaptive LL(*) Parsing: The Power of Dynamic Analysis

Terence Parr
University of San Francisco

parrt@cs.usfca.edu

Sam Harwell
University of Texas at Austin

samharwell@utexas.edu

Kathleen Fisher
Tufts University

kfisher@eecs.tufts.edu

Abstract
Despite the advances made by modern parsing strategies such
as PEG, LL(*), GLR, and GLL, parsing is not a solved prob-
lem. Existing approaches suffer from a number of weaknesses,
including difficulties supporting side-effecting embedded ac-
tions, slow and/or unpredictable performance, and counter-
intuitive matching strategies. This paper introduces the ALL(*)
parsing strategy that combines the simplicity, efficiency, and
predictability of conventional top-down LL(k) parsers with the
power of a GLR-like mechanism to make parsing decisions.
The critical innovation is to move grammar analysis to parse-
time, which lets ALL(*) handle any non-left-recursive context-
free grammar. ALL(*) is O(n4) in theory but consistently per-
forms linearly on grammars used in practice, outperforming
general strategies such as GLL and GLR by orders of magni-
tude. ANTLR 4 generates ALL(*) parsers and supports direct
left-recursion through grammar rewriting. Widespread ANTLR
4 use (5000 downloads/month in 2013) provides evidence that
ALL(*) is effective for a wide variety of applications.

1. Introduction
Computer language parsing is still not a solved problem in
practice, despite the sophistication of modern parsing strategies
and long history of academic study. When machine resources
were scarce, it made sense to force programmers to contort
their grammars to fit the constraints of deterministic LALR(k)
or LL(k) parser generators.1 As machine resources grew, re-
searchers developed more powerful, but more costly, nondeter-
ministic parsing strategies following both “bottom-up” (LR-
style) and “top-down” (LL-style) approaches. Strategies in-
clude GLR [26], Parser Expression Grammar (PEG) [9], LL(*)
[20] from ANTLR 3, and recently, GLL [25], a fully general
top-down strategy.

Although these newer strategies are much easier to use than
LALR(k) and LL(k) parser generators, they suffer from a
variety of weaknesses. First, nondeterministic parsers some-
times have unanticipated behavior. GLL and GLR return multi-
ple parse trees (forests) for ambiguous grammars because they
were designed to handle natural language grammars, which are
often intentionally ambiguous. For computer languages, am-
biguity is almost always an error. One can certainly walk the
constructed parse forest to disambiguate it, but that approach
costs extra time, space, and machinery for the uncommon case.

1 We use the term deterministic in the way that deterministic finite automata
(DFA) differ from nondeterministic finite automata (NFA): The next symbol(s)
uniquely determine action.

PEGs are unambiguous by definition but have a quirk where
ruleA→ a | ab (meaning “Amatches either a or ab”) can never
match ab since PEGs choose the first alternative that matches
a prefix of the remaining input. Nested backtracking makes de-
bugging PEGs difficult.

Second, side-effecting programmer-supplied actions (muta-
tors) like print statements should be avoided in any strategy that
continuously speculates (PEG) or supports multiple interpreta-
tions of the input (GLL and GLR) because such actions may
never really take place [17]. (Though DParser [24] supports
“final” actions when the programmer is certain a reduction is
part of an unambiguous final parse.) Without side effects, ac-
tions must buffer data for all interpretations in immutable data
structures or provide undo actions. The former mechanism is
limited by memory size and the latter is not always easy or pos-
sible. The typical approach to avoiding mutators is to construct
a parse tree for post-parse processing, but such artifacts funda-
mentally limit parsing to input files whose trees fit in memory.
Parsers that build parse trees cannot analyze large data files or
infinite streams, such as network traffic, unless they can be pro-
cessed in logical chunks.

Third, our experiments (Section 7) show that GLL and GLR
can be slow and unpredictable in time and space. Their com-
plexities are, respectively, O(n3) and O(np+1) where p is the
length of the longest production in the grammar [14]. (GLR is
typically quoted as O(n3) because Kipps [15] gave such an al-
gorithm, albeit with a constant so high as to be impractical.) In
theory, general parsers should handle deterministic grammars
in near-linear time. In practice, we found GLL and GLR to be
˜135x slower than ALL(*) on a corpus of 12,920 Java 6 library
source files (123M) and 6 orders of magnitude slower on a sin-
gle 3.2M Java file, respectively.

LL(*) addresses these weaknesses by providing a mostly de-
terministic parsing strategy that uses regular expressions, rep-
resented as deterministic finite automata (DFA), to potentially
examine the entire remaining input rather than the fixed k-
sequences of LL(k). Using DFA for lookahead limits LL(*)
decisions to distinguishing alternatives with regular lookahead
languages, even though lookahead languages (set of all pos-
sible remaining input phrases) are often context-free. But the
main problem is that the LL(*) grammar condition is statically
undecidable and grammar analysis sometimes fails to find reg-
ular expressions that distinguish between alternative produc-
tions. ANTLR 3’s static analysis detects and avoids potentially-
undecidable situations, failing over to backtracking parsing de-
cisions instead. This gives LL(*) the same a | ab quirk as PEGs

1 2014/3/24

for such decisions. Backtracking decisions that choose the first
matching alternative also cannot detect obvious ambiguities
such A → α |α where α is some sequence of grammar sym-
bols that makes α |α non-LL(*).

1.1 Dynamic grammar analysis
In this paper, we introduce Adaptive LL(*) , or ALL(*) , parsers
that combine the simplicity of deterministic top-down parsers
with the power of a GLR-like mechanism to make parsing de-
cisions. Specifically, LL parsing suspends at each prediction
decision point (nonterminal) and then resumes once the pre-
diction mechanism has chosen the appropriate production to
expand. The critical innovation is to move grammar analysis to
parse-time; no static grammar analysis is needed. This choice
lets us avoid the undecidability of static LL(*) grammar anal-
ysis and lets us generate correct parsers (Theorem 6.1) for any
non-left-recursive context-free grammar (CFG). While static
analysis must consider all possible input sequences, dynamic
analysis need only consider the finite collection of input se-
quences actually seen.

The idea behind the ALL(*) prediction mechanism is to
launch subparsers at a decision point, one per alternative pro-
duction. The subparsers operate in pseudo-parallel to explore
all possible paths. Subparsers die off as their paths fail to match
the remaining input. The subparsers advance through the input
in lockstep so analysis can identify a sole survivor at the min-
imum lookahead depth that uniquely predicts a production. If
multiple subparsers coalesce together or reach the end of file,
the predictor announces an ambiguity and resolves it in favor
of the lowest production number associated with a surviving
subparser. (Productions are numbered to express precedence as
an automatic means of resolving ambiguities like PEGs; Bi-
son also resolves conflicts by choosing the production specified
first.) Programmers can also embed semantic predicates [22] to
choose between ambiguous interpretations.

ALL(*) parsers memoize analysis results, incrementally and
dynamically building up a cache of DFA that map lookahead
phrases to predicted productions. (We use the term analysis in
the sense that ALL(*) analysis yields lookahead DFA like static
LL(*) analysis.) The parser can make future predictions at the
same parser decision and lookahead phrase quickly by consult-
ing the cache. Unfamiliar input phrases trigger the grammar
analysis mechanism, simultaneously predicting an alternative
and updating the DFA. DFA are suitable for recording predic-
tion results, despite the fact that the lookahead language at a
given decision typically forms a context-free language. Dy-
namic analysis only needs to consider the finite context-free
language subsets encountered during a parse and any finite set
is regular.

To avoid the exponential nature of nondeterministic sub-
parsers, prediction uses a graph-structured stack (GSS) [25] to
avoid redundant computations. GLR uses essentially the same
strategy except that ALL(*) only predicts productions with such
subparsers whereas GLR actually parses with them. Conse-
quently, GLR must push terminals onto the GSS but ALL(*)
does not.

ALL(*) parsers handle the task of matching terminals and
expanding nonterminals with the simplicity of LL but have
O(n4) theoretical time complexity (Theorem 6.3) because in
the worst-case, the parser must make a prediction at each input
symbol and each prediction must examine the entire remaining
input; examining an input symbol can cost O(n2). O(n4) is
in line with the complexity of GLR. In Section 7, we show
empirically that ALL(*) parsers for common languages are
efficient and exhibit linear behavior in practice.

The advantages of ALL(*) stem from moving grammar anal-
ysis to parse time, but this choice places an additional bur-
den on grammar functional testing. As with all dynamic ap-
proaches, programmers must cover as many grammar position
and input sequence combinations as possible to find grammar
ambiguities. Standard source code coverage tools can help pro-
grammers measure grammar coverage for ALL(*) parsers. High
coverage in the generated code corresponds to high grammar
coverage.

The ALL(*) algorithm is the foundation of the ANTLR 4
parser generator (ANTLR 3 is based upon LL(*)). ANTLR 4
was released in January 2013 and gets about 5000 download-
s/month (source, binary, or ANTLRworks2 development envi-
ronment, counting non-robot entries in web logs with unique
IP addresses to get a lower bound.) Such activity provides evi-
dence that ALL(*) is useful and usable.

The remainder of this paper is organized as follows. We be-
gin by introducing the ANTLR 4 parser generator (Section 2)
and discussing the ALL(*) parsing strategy (Section 3). Next,
we define predicated grammars, their augmented transition
network representation, and lookahead DFA (Section 4). Then,
we describe ALL(*) grammar analysis and present the pars-
ing algorithm itself (Section 5). Finally, we support our claims
regarding ALL(*) correctness (Section 6) and efficiency (Sec-
tion 7) and examine related work (Section 8). Appendix A has
proofs for key ALL(*) theorems, Appendix B discusses algo-
rithm pragmatics, Appendix C has left-recursion elimination
details.

2. ANTLR 4
ANTLR 4 accepts as input any context-free grammar that does
not contain indirect or hidden left-recursion.2 From the gram-
mar, ANTLR 4 generates a recursive-descent parser that uses
an ALL(*) production prediction function (Section 3). ANTLR
currently generates parsers in Java or C#. ANTLR 4 gram-
mars use yacc-like syntax with extended BNF (EBNF) oper-
ators such as Kleene star (*) and token literals in single quotes.
Grammars contain both lexical and syntactic rules in a com-
bined specification for convenience. ANTLR 4 generates both
a lexer and a parser from the combined specification. By using
individual characters as input symbols, ANTLR 4 grammars
can be scannerless and composable because ALL(*) languages
are closed under union (Theorem 6.2), providing the benefits of

2 Indirectly left-recursive rules call themselves through another rule; e.g.,A→
B, B → A. Hidden left-recursion occurs when an empty production exposes
left recursion; e.g., A→ BA, B → ε.

2 2014/3/24

modularity described by Grimm [10]. (We will henceforth refer
to ANTLR 4 as ANTLR and explicitly mark earlier versions.)

Programmers can embed side-effecting actions (mutators),
written in the host language of the parser, in the grammar. The
actions have access to the current state of the parser. The parser
ignores mutators during speculation to prevent actions from
“launching missiles” speculatively. Actions typically extract
information from the input stream and create data structures.

ANTLR also supports semantic predicates, which are side-
effect free Boolean-valued expressions written in the host lan-
guage that determine the semantic viability of a particular
production. Semantic predicates that evaluate to false during
the parse render the surrounding production nonviable, dy-
namically altering the language generated by the grammar at
parse-time.3 Predicates significantly increase the strength of
a parsing strategy because predicates can examine the parse
stack and surrounding input context to provide an informal
context-sensitive parsing capability. Semantic actions and pred-
icates typically work together to alter the parse based upon
previously-discovered information. For example, a C grammar
could have embedded actions to define type symbols from con-
structs, like typedef int i32;, and predicates to distinguish
type names from other identifiers in subsequent definitions like
i32 x;.

2.1 Sample grammar
Figure 1 illustrates ANTLRs yacc-like metalanguage by giv-
ing the grammar for a simple programming language with as-
signment and expression statements terminated by semicolons.
There are two grammar features that render this grammar non-
LL(*) and, hence, unacceptable to ANTLR 3. First, rule expr

is left recursive. ANTLR 4 automatically rewrites the rule to
be non-left-recursive and unambiguous, as described in Sec-
tion 2.2. Second, the alternative productions of rule stat have
a common recursive prefix (expr), which is sufficient to ren-
der stat undecidable from an LL(*) perspective. ANTLR 3
would detect recursion on production left edges and fail over to
a backtracking decision at runtime.

Predicate {!enum is keyword}? in rule id allows or disal-
lows enum as a valid identifier according to the predicate at the
moment of prediction. When the predicate is false, the parser
treats id as just id : ID ; disallowing enum as an id as the
lexer matches enum as a separate token from ID. This exam-
ple demonstrates how predicates allow a single grammar to de-
scribe subsets or variations of the same language.

2.2 Left-recursion removal
The ALL(*) parsing strategy itself does not support left-recursion,
but ANTLR supports direct left-recursion through grammar
rewriting prior to parser generation. Direct left-recursion cov-
ers the most common cases, such as arithmetic expression pro-
ductions, likeE → E . id, and C declarators. We made an engi-
neering decision not to support indirect or hidden left-recursion

3 Previous versions of ANTLR supported syntactic predicates to disambiguate
cases where static grammar analysis failed; this facility is not needed in
ANTLR4 because of ALL(*)’s dynamic analysis.

grammar Ex; // generates class ExParser

// action defines ExParser member: enum_is_keyword

@members {boolean enum_is_keyword = true;}
stat: expr ’=’ expr ’;’ // production 1

| expr ’;’ // production 2

;

expr: expr ’*’ expr

| expr ’+’ expr

| expr ’(’ expr ’)’ // f(x)

| id

;

id : ID | {!enum_is_keyword}? ’enum’ ;

ID : [A-Za-z]+ ; // match id with upper, lowercase

WS : [\t\r\n]+ -> skip ; // ignore whitespace

Figure 1. Sample left-recursive ANTLR 4 predicated-grammar Ex

because these forms are much less common and removing all
left recursion can lead to exponentially-big transformed gram-
mars. For example, the C11 language specification grammar
contains lots of direct left-recursion but no indirect or hidden
recursion. See Appendix 2.2 for more details.

2.3 Lexical analysis with ALL(*)
ANTLR uses a variation of ALL(*) for lexing that fully matches
tokens instead of just predicting productions like ALL(*)
parsers do. After warm-up, the lexer will have built a DFA sim-
ilar to what regular-expression based tools such as lex would
create statically. The key difference is that ALL(*) lexers are
predicated context-free grammars not just regular expressions
so they can recognize context-free tokens such as nested com-
ments and can gate tokens in and out according to semantic
context. This design is possible because ALL(*) is fast enough
to handle lexing as well as parsing.

ALL(*) is also suitable for scannerless parsing because of its
recognition power, which comes in handy for context-sensitive
lexical problems like merging C and SQL languages. Such a
union has no clear lexical sentinels demarcating lexical regions:
int next = select ID from users where name=’Raj’+1;

int from = 1, select = 2;

int x = select * from;

See grammar code/extras/CSQL in [19] for a proof of concept.

3. Introduction to ALL(*) parsing
In this section, we explain the ideas and intuitions behind
ALL(*) parsing. Section 5 will then present the algorithm more
formally. The strength of a top-down parsing strategy is related
to how the strategy chooses which alternative production to
expand for the current nonterminal. Unlike LL(k) and LL(*)
parsers, ALL(*) parsers always choose the first alternative that
leads to a valid parse. All non-left-recursive grammars are
therefore ALL(*).

Instead of relying on static grammar analysis, an ALL(*)
parser adapts to the input sentences presented to it at parse-
time. The parser analyzes the current decision point (nonter-
minal with multiple productions) using a GLR-like mechanism
to explore all possible decision paths with respect to the cur-
rent “call” stack of in-process nonterminals and the remaining

3 2014/3/24

void stat() { / / p a r s e a c c o r d i n g t o r u l e s t a t
switch (adaptivePredict("stat", call stack)) {

case 1 : / / p r e d i c t p r o d u c t i o n 1
expr (); match(’=’); expr (); match(’;’);

break;

case 2 : / / p r e d i c t p r o d u c t i o n 2
expr (); match(’;’); break;

}

}

Figure 2. Recursive-descent code for stat in grammar Ex

expr
stat

expr

'=' expr

';'

';'ɛ

ɛ
ɛ

ɛ
p

q

Figure 3. ATN for ANTLR rule stat in grammar Ex

input on-demand. The parser incrementally and dynamically
builds a lookahead DFA per decision that records a mapping
from lookahead sequence to predicted production number. If
the DFA constructed to date matches the current lookahead,
the parser can skip analysis and immediately expand the pre-
dicted alternative. Experiments in Section 7 show that ALL(*)
parsers usually get DFA cache hits and that DFA are critical to
performance.

Because ALL(*) differs from deterministic top-down meth-
ods only in the prediction mechanism, we can construct con-
ventional recursive-descent LL parsers but with an important
twist. ALL(*) parsers call a special prediction function, adap-
tivePredict, that analyzes the grammar to construct lookahead
DFA instead of simply comparing the lookahead to a statically-
computed token set. Function adaptivePredict takes a nonter-
minal and parser call stack as parameters and returns the pre-
dicted production number or throws an exception if there is no
viable production. For example, rule stat from the example in
Section 2.1 yields a parsing procedure similar to Figure 2.

ALL(*) prediction has a structure similar to the well-known
NFA-to-DFA subset construction algorithm. The goal is to dis-
cover the set of states the parser could reach after having seen
some or all of the remaining input relative to the current de-
cision. As in subset construction, an ALL(*) DFA state is the
set of parser configurations possible after matching the input
leading to that state. Instead of an NFA, however, ALL(*) sim-
ulates the actions of an augmented recursive transition net-
work (ATN) [27] representation of the grammar since ATNs
closely mirror grammar structure. (ATNs look just like syn-
tax diagrams that can have actions and semantic predicates.)
LL(*)’s static analysis also operates on an ATN for the same
reason. Figure 3 shows the ATN submachine for rule stat.

An ATN configuration represents the execution state of a
subparser and tracks the ATN state, predicted production num-
ber, and ATN subparser call stack: tuple (p, i, γ).4 Configu-
rations include production numbers so prediction can identify
which production matches the current lookahead. Unlike static
LL(*) analysis, ALL(*) incrementally builds DFA considering
just the lookahead sequences it has seen instead of all possible
sequences.

4 Component i does not exist in the machine configurations of GLL, GLR, or
Earley [8].

1
ID =

:1sD0

ID =

ID)(;
:1

:2

s1D0

(a) After x=y; (b) After x=y; and f(x);

Figure 4. Prediction DFA for decision stat

When parsing reaches a decision for the first time, adap-
tivePredict initializes the lookahead DFA for that decision by
creating a DFA start state, D0. D0 is the set of ATN subparser
configurations reachable without consuming an input symbol
starting at each production left edge. For example, construction
of D0 for nonterminal stat in Figure 3 would first add ATN
configurations (p, 1, []) and (q, 2, []) where p and q are ATN
states corresponding to production 1 and 2’s left edges and [] is
the empty subparser call stack (if stat is the start symbol).

Analysis next computes a new DFA state indicating where
ATN simulation could reach after consuming the first looka-
head symbol and then connects the two DFA states with an
edge labeled with that symbol. Analysis continues, adding new
DFA states, until all ATN configurations in a newly-created
DFA state predict the same production: (−, i,−). Function
adaptivePredict marks that state as an accept state and returns
to the parser with that production number. Figure 4a shows the
lookahead DFA for decision stat after adaptivePredict has an-
alyzed input sentence x=y;. The DFA does not look beyond =

because = is sufficient to uniquely distinguish expr’s produc-
tions. (Notation :1 means “predict production 1.”)

In the typical case, adaptivePredict finds an existing DFA
for a particular decision. The goal is to find or build a path
through the DFA to an accept state. If adaptivePredict reaches
a (non-accept) DFA state without an edge for the current looka-
head symbol, it reverts to ATN simulation to extend the DFA
(without rewinding the input). For example, to analyze a second
input phrase for stat, such as f(x);, adaptivePredict finds an
existing ID edge from the D0 and jumps to s1 without ATN
simulation. There is no existing edge from s1 for the left paren-
thesis so analysis simulates the ATN to complete a path to an
accept state, which predicts the second production, as shown
in Figure 4b. Note that because sequence ID(ID) predicts both
productions, analysis continues until the DFA has edges for the
= and ; symbols.

If ATN simulation computes a new target state that already
exists in the DFA, simulation adds a new edge targeting the ex-
isting state and switches back to DFA simulation mode starting
at that state. Targeting existing states is how cycles can appear
in the DFA. Extending the DFA to handle unfamiliar phrases
empirically decreases the likelihood of future ATN simulation,
thereby increasing parsing speed (Section 7).

3.1 Predictions sensitive to the call stack
Parsers cannot always rely upon lookahead DFA to make
correct decisions. To handle all non-left-recursive grammars,
ALL(*) prediction must occasionally consider the parser call
stack available at the start of prediction (denoted γ0 in Sec-
tion 5). To illustrate the need for stack-sensitive predictions,
consider that predictions made while recognizing a Java method
definition might depend on whether the method was defined

4 2014/3/24

within an interface or class definition. (Java interface methods
cannot have bodies.) Here is a simplified grammar that exhibits
a stack-sensitive decision in nonterminal A:

S → xB | yC B → Aa C → Aba A→ b | ε
Without the parser stack, no amount of lookahead can uniquely
distinguish between A’s productions. Lookahead ba predicts
A → b when B invokes A but predicts A → ε when C
invokes A. If prediction ignores the parser call stack, there is
a prediction conflict upon ba.

Parsers that ignore the parser call stack for prediction are
called Strong LL (SLL) parsers. The recursive-descent parsers
programmers build by hand are in the SLL class. By conven-
tion, the literature refers to SLL as LL but we distinguish the
terms since “real” LL is needed to handle all grammars. The
above grammar is LL(2) but not SLL(k) for any k, though
duplicating A for each call site renders the grammar SLL(2).

Creating a different lookahead DFA for each possible parser
call stack is not feasible since the number of stack permutations
is exponential in the stack depth. Instead, we take advantage of
the fact that most decisions are not stack-sensitive and build
lookahead DFA ignoring the parser call stack. If SLL ATN
simulation finds a prediction conflict (Section 5.3), it cannot be
sure if the lookahead phrase is ambiguous or stack-sensitive.
In this case, adaptivePredict must re-examine the lookahead
using the parser stack γ0. This hybrid or optimized LL mode
improves performance by caching stack-insensitive prediction
results in lookahead DFA when possible while retaining full
stack-sensitive prediction power. Optimized LL mode applies
on a per-decision basis, but two-stage parsing, described next,
can often avoid LL simulation completely. (We henceforth use
SLL to indicate stack-insensitive parsing and LL to indicate
stack-sensitive.)

3.2 Two-stage ALL(*) parsing
SLL is weaker but faster than LL. Since we have found that
most decisions are SLL in practice, it makes sense to attempt
parsing entire inputs in “SLL only mode,” which is stage one
of the two-stage ALL(*) parsing algorithm. If, however, SLL
mode finds a syntax error, it might have found an SLL weak-
ness or a real syntax error, so we have to retry the entire input
using optimized LL mode, which is stage two. This counter-
intuitive strategy, which potentially parses entire inputs twice,
can dramatically increase speed over the single-stage optimized
LL mode stage. For example, two-stage parsing with the Java
grammar (Section 7) is 8x faster than one-stage optimized LL
mode to parse a 123M corpus. The two-stage strategy relies on
the fact that SLL either behaves like LL or gets a syntax er-
ror (Theorem 6.5). For invalid sentences, there is no derivation
for the input regardless of how the parser chooses productions.
For valid sentences, SLL chooses productions as LL would or
picks a production that ultimately leads to a syntax error (LL
finds that choice nonviable). Even in the presence of ambigu-
ities, SLL often resolves conflicts as LL would. For example,
despite a few ambiguities in our Java grammar, SLL mode cor-
rectly parses all inputs we have tried without failing over to

LL. Nonetheless, the second (LL) stage must remain to ensure
correctness.

4. Predicated grammars, ATNs, and DFA
To formalize ALL(*) parsing, we first need to recall some back-
ground material, specifically, the formal definitions of predicate
grammars, ATNs, and Lookahead DFA.

4.1 Predicated grammars
To formalize ALL(*) parsing, we first need to formally define
the predicated grammars from which they are derived. A pred-
icated grammar G = (N,T, P, S,Π,M) has elements:
• N is the set of nonterminals (rule names)
• T is the set of terminals (tokens)
• P is the set of productions
• S ∈ N is the start symbol
• Π is a set of side-effect-free semantic predicates
•M is a set of actions (mutators)

Predicated ALL(*) grammars differ from those of LL(*) [20]
only in that ALL(*) grammars do not need or support syntactic
predicates. Predicated grammars in the formal sections of this
paper use the notation shown in Figure 5. The derivation rules
in Figure 6 define the meaning of a predicated grammar. To
support semantic predicates and mutators, the rules reference
state S, which abstracts user state during parsing. The judg-
ment form (S, α) ⇒ (S′, β) may be read: “In machine state
S, grammar sequence α reduces in one step to modified state
S′ and grammar sequence β.” The judgment (S, α)⇒∗ (S′, β)
denotes repeated applications of the one-step reduction rule.
These reduction rules specify a leftmost derivation. A produc-
tion with a semantic predicate πi is viable only if πi is true of
the current state S. Finally, an action production uses the spec-
ified mutator µi to update the state.

Formally, the language generated by grammar sequence α in
user state S is L(S, α) = {w | (S, α) ⇒∗ (S′, w)} and the lan-
guage of grammar G is L(S0, G) = {w | (S0, S) ⇒∗ (S, w)}
for initial user state S0 (S0 can be empty). If u is a prefix of w
or equal to w, we write u � w. Language L is ALL(*) iff there
exists an ALL(*) grammar for L. Theoretically, the language
class of L(G) is recursively enumerable because each mutator
could be a Turing machine. In reality, grammar writers do not
use this generality so it is standard practice to consider the lan-
guage class to be the context-sensitive languages instead. The
class is context-sensitive rather than context-free as predicates
can examine the call stack and terminals to the left and right.

This formalism has various syntactic restrictions not present
in actual ANTLR grammars, for example, forcing mutators
into their own rules and disallowing the common Extended
BNF (EBNF) notation such as α∗ and α+ closures. We can
make these restrictions without loss of generality because any
grammar in the general form can be translated into this more
restricted form.

4.2 Resolving ambiguity
An ambiguous grammar is one in which the same input se-
quence can be recognized in multiple ways. The rules in Fig-

5 2014/3/24

A ∈ N Nonterminal
a, b, c, d ∈ T Terminal
X ∈ (N ∪ T) Production element
α, β, δ ∈ X∗ Sequence of grammar symbols
u, v, w, x, y ∈ T ∗ Sequence of terminals
ε Empty string
$ End of file “symbol”
π ∈ Π Predicate in host language
µ ∈M Action in host language
λ ∈ (N ∪Π ∪M) Reduction label
~λ = λ1..λn Sequence of reduction labels
Production Rules:
A→ αi ith context-free production of A
A→ {πi}? αi ith production predicated on semantics
A→ {µi} ith production with mutator

Figure 5. Predicated Grammar Notation

Prod A→ α
(S, uAδ)⇒ (S, uαδ)

Sem

π(S)
A→ {π}?α

(S, uAδ)⇒ (S, uαδ) Action A→ {µ}
(S, uAδ)⇒ (µ(S), uδ)

Closure (S, α)⇒ (S′, α′), (S′, α′)⇒∗ (S′′, β)
(S, α)⇒∗ (S′′, β)

Figure 6. Predicated Grammar Leftmost Derivation Rules

ure 6 do not preclude ambiguity. However, for a practical pro-
graming language parser, each input should correspond to a
unique parse. To that end, ALL(*) uses the order of the pro-
ductions in a rule to resolve ambiguities in favor of the pro-
duction with the lowest number. This strategy is a concise way
for programmers to resolve ambiguities automatically and re-
solves the well-known if-then-else ambiguity in the usual way
by associating the else with the most recent if. PEGs and Bison
parsers have the same resolution policy.

To resolve ambiguities that depend on the current state S,
programmers can insert semantic predicates but must make
them mutually exclusive for all potentially ambiguous input se-
quences to render such productions unambiguous. Statically,
mutual exclusion cannot be enforced because predicates are
written in a Turing-complete language. At parse-time, how-
ever, ALL(*) evaluates predicates and dynamically reports in-
put phrases for which multiple, predicated productions are vi-
able. If the programmer fails to satisfy mutual exclusivity,
ALL(*) uses production order to resolve the ambiguity.

4.3 Augmented transition networks
Given predicated grammar G = (N,T, P, S,Π,M), the corre-
sponding ATN MG = (Q,Σ,∆, E, F) has elements [20]:
• Q is the set of states
• Σ is the edge alphabet N ∪ T ∪Π ∪M
• ∆ is the transition relation mapping Q× (Σ ∪ ε)→ Q
• E ∈ Q = {pA | A ∈ N} is set of submachine entry states
• F ∈ Q = {p′A | A ∈ N} is set of submachine final states

ATNs resemble the syntax diagrams used to document pro-
gramming languages, with an ATN submachine for each non-
terminal. Figure 7 shows how to construct the set of states Q
and edges ∆ from grammar productions. The start state for A

Input Grammar Element Resulting ATN Transitions
A→ αi pA

ε−→ pA,i
ε−→ αi

ε−→ p′A

A→ {πi}?αi pA
ε−→ pA,i

πi−→ αi
ε−→ p′A

A→ {µi} pA
ε−→ pA,i

µi−→ p′A
A→ εi pA

ε−→ pA,i
ε−→ p′A

αi = X1X2 . . . Xm
for Xj ∈ N ∪ T, j = 1..m

p0
X1−−→ p1

X2−−→ . . .
Xm−−→ pm

Figure 7. Predicated Grammar to ATN transformation

c

d

ε
ε

ε
ε A

A A ε

ε

ε
ε

b

a
pS

p
S,1

p'S p'ApA
p
S,2

p
A,1

p
A,2

p1 p2

p3 p4

p5 p6

p7

Figure 8. ATN for G with P={S → Ac |Ad, A→ aA | b}

is pA ∈ Q and targets pA,i, created from the left edge of αi,
with an edge in ∆. The last state created from αi targets p′A.
Nonterminal edges p A−→ q are like function calls. They trans-
fer control of the ATN to A’s submachine, pushing return state
q onto a state call stack so it can continue from q after reaching
the stop state for A’s submachine, p′A. Figure 8 gives the ATN
for a simple grammar. The language matched by the ATN is the
same as the language of the original grammar.

4.4 Lookahead DFA
ALL(*) parsers record prediction results obtained from ATN
simulation with lookahead DFA, which are DFA augmented
with accept states that yield predicted production numbers.
There is one accept state per production of a decision.
Definition 4.1. Lookahead DFA are DFA with augmented
accept states that yield predicted production numbers. For
predicated grammar G = (N,T, P, S,Π,M), DFA M =
(Q,Σ,∆, D0, F) where:
• Q is the set of states
• Σ = T is the edge alphabet
• ∆ is the transition function mapping Q× Σ→ Q
• D0 ∈ Q is the start state
• F ∈ Q = {f1, f2, . . . , fn} final states, one fi per prod. i

A transition in ∆ from state p to state q on symbol a ∈ Σ has
the form p

a→ q and we require p a−→ q′ implies q = q′.

5. ALL(*) parsing algorithm
With the definitions of grammars, ATNs, and lookahead DFA
formalized, we can present the key functions of the ALL(*)
parsing algorithm. This section starts with a summary of the
functions and how they fit together then discusses a critical
graph data structure before presenting the functions them-
selves. We finish with an example of how the algorithm works.

Parsing begins with function parse that behaves like a con-
ventional top-down LL(k) parse function except that ALL(*)
parsers predict productions with a special function called adap-
tivePredict, instead of the usual “switch on next k token types”
mechanism. Function adaptivePredict simulates an ATN rep-
resentation of the original predicated grammar to choose an
αi production to expand for decision point A → α1 | ... |αn.

6 2014/3/24

Conceptually, prediction is a function of the current parser call
stack γ0, remaining input wr, and user state S if A has predi-
cates. For efficiency, prediction ignores γ0 when possible (Sec-
tion 3.1) and uses the minimum lookahead from wr.

To avoid repeating ATN simulations for the same input
and nonterminal, adaptivePredict assembles DFA that memo-
ize input-to-predicted-production mappings, one DFA per non-
terminal. Recall that each DFA state, D, is the set of ATN
configurations possible after matching the lookahead symbols
leading to that state. Function adaptivePredict calls startState
to create initial DFA state, D0, and then SLLpredict to begin
simulation.

Function SLLpredict adds paths to the lookahead DFA that
match some or all of wr through repeated calls to target. Func-
tion target computes DFA target state D′ from current state D
using move and closure operations similar to those found in
subset construction. Function move finds all ATN configura-
tions reachable on the current input symbol and closure finds
all configurations reachable without traversing a terminal edge.
The primary difference from subset construction is that closure
simulates the call and return of ATN submachines associated
with nonterminals.

If SLL simulation finds a conflict (Section 5.3), SLLpredict
rewinds the input and calls LLpredict to retry prediction, this
time considering γ0. Function LLpredict is similar to SLLpre-
dict but does not update a nonterminal’s DFA because DFA
must be stack-insensitive to be applicable in all stack contexts.
Conflicts within ATN configuration sets discovered by LLpre-
dict represent ambiguities. Both prediction functions use get-
ConflictSetsPerLoc to detect conflicts, which are configurations
representing the same parser location but different productions.
To avoid failing over to LLpredict unnecessarily, SLLpredict
uses getProdSetsPerState to see if a potentially non-conflicting
DFA path remains when getConflictSetsPerLoc reports a con-
flict. If so, it is worth continuing with SLLpredict on the chance
that more lookahead will resolve the conflict without recourse
to full LL parsing.

Before describing these functions in detail, we review a
fundamental graph data structure that they use to efficiently
manage multiple call stacks a la GLL and GLR.

5.1 Graph-structured call stacks
The simplest way to implement ALL(*) prediction would be a
classic backtracking approach, launching a subparser for each
αi. The subparsers would consume all remaining input because
backtracking subparsers do not know when to stop parsing—
they are unaware of other subparsers’ status. The independent
subparsers would also lead to exponential time complexity.
We address both issues by having the prediction subparsers
advance in lockstep through wr. Prediction terminates after
consuming prefix u � wr when all subparsers but one die off
or when prediction identifies a conflict. Operating in lockstep
also provides an opportunity for subparsers to share call stacks
thus avoiding redundant computations.

Two subparsers at ATN state p that share the same ATN
stack top, qγ1 and qγ2, will mirror each other’s behavior until

simulation pops q from their stacks. Prediction can treat those
subparsers as a single subparser by merging stacks. We merge
stacks for all configurations in a DFA state of the form (p, i, γ1)
and (p, i, γ2), forming a general configuration (p, i,Γ) with
graph-structured stack (GSS) [25] Γ = γ1]γ2 where]means
graph merge. Γ can be the empty stack [], a special stack # used
for SLL prediction (addressed shortly), an individual stack, or
a graph of stack nodes. Merging individual stacks into a GSS
reduces the potential size from exponential to linear complexity
(Theorem 6.4). To represent a GSS, we use an immutable graph
data structure with maximal sharing of nodes. Here are two
examples that share the parser stack γ0 at the bottom of the
stack:

pγ0] qγ0 =
γ0

p q
qΓγ0] qΓ′γ0 =

γ0

Γ Γ′

q

In the functions that follow, all additions to configuration sets,
such as with operator +=, implicitly merge stacks.

There is a special case related to the stack condition at the
start of prediction. Γ must distinguish between an empty stack
and no stack information. For LL prediction, the initial ATN
simulation stack is the current parser call stack γ0. The initial
stack is only empty, γ0 = [], when the decision entry rule is
the start symbol. Stack-insensitive SLL prediction, on the other
hand, ignores the parser call stack and uses an initial stack of
#, indicating no stack information. This distinction is impor-
tant when computing the closure (Function 7) of configurations
representing submachine stop states. Without parser stack in-
formation, a subparser that returns from decision entry rule A
must consider all possible invocation sites; i.e., closure sees
configuration (p′A,−,#).

The empty stack [] is treated like any other node for LL
prediction: Γ] [] yields the graph equivalent of set {Γ, []},
meaning that both Γ and the empty stack are possible. Pushing
state p onto [] yields p[] not p because popping p must leave the
[] empty stack symbol. For SLL prediction, Γ]# = # for any
graph Γ because # acts like a wildcard and represents the set
of all stacks. The wildcard therefore contains any Γ. Pushing
state p onto # yields p#.

5.2 ALL(*) parsing functions
We can now present the key ALL(*) functions, which we have
highlighted in boxes and interspersed within the text of this
section. Our discussion follows a top-down order and assumes
that the ATN corresponding to grammar G, the semantic state
S, the DFA under construction, and input are in scope for all
functions of the algorithm and that semantic predicates and
actions can directly access S.

Function parse. The main entry point is function parse
(shown in Function 1), which initiates parsing at the start sym-
bol, argument S. The function begins by initializing a simu-
lation call stack γ to an empty stack and setting ATN state
“cursor” p to pS,i, the ATN state on the left edge of S’s pro-
duction number i predicted by adaptivePredict. The function
loops until the cursor reaches p′S , the submachine stop state
for S. If the cursor reaches another submachine stop state, p′B ,

7 2014/3/24

parse simulates a “return” by popping the return state q off the
call stack and moving p to q.

Function 1: parse(S)
γ := []; i := adaptivePredict(S, γ); p := pS,i;
while true do

if p = p′B (i.e., p is a rule stop state) then
if B = S (finished matching start rule S) then return;
else let γ = qγ′ in γ := γ′; p := q;

else
switch t where p t−→ q do

case b: (i.e., terminal symbol transition)
if b = input.curr() then
p := q; input.advance();

else parse error;
case B: γ := qγ; i := adaptivePredict(B, γ); p:=pB,i;
case µ: S := µ(S); p := q;
case π: if π(S) then p := q else parse error;
case ε: p := q;

endsw

For p not at a stop state, parse processes ATN transition
p

t−→ q. There can be only one transition from p because of the
way ATNs are constructed. If t is a terminal edge and matches
the current input symbol, parse transitions the edge and moves
to the next symbol. If t is a nonterminal edge referencing some
B, parse simulates a submachine call by pushing return state
q onto the stack and choosing the appropriate production left
edge in B by calling adaptivePredict and setting the cursor ap-
propriately. For action edges, parse updates the state according
to the mutator µ and transitions to q. For predicate edges, parse
transitions only if predicate π evaluates to true. During the
parse, failed predicates behave like mismatched tokens. Upon
an ε edge, parse moves to q. Function parse does not explicitly
check that parsing stops at end-of-file because applications like
development environments need to parse input subphrases.

Function adaptivePredict. To predict a production, parse
calls adaptivePredict (Function 2), which is a function of the
decision nonterminal A and the current parser stack γ0. Be-
cause prediction only evaluates predicates during full LL sim-
ulation, adaptivePredict delegates to LLpredict if at least one
of the productions is predicated.5 For decisions that do not yet
have a DFA, adaptivePredict creates DFA dfaA with start state
D0 in preparation for SLLpredict to add DFA paths. D0 is the
set of ATN configurations reachable without traversing a ter-
minal edge. Function adaptivePredict also constructs the set of
final states FDFA, which contains one final state fi for each
production of A. The set of DFA states, QDFA, is the union
of D0, FDFA, and the error state Derror. Vocabulary ΣDFA
is the set of grammar terminals T . For unpredicated decisions
with existing DFA, adaptivePredict calls SLLpredict to obtain a
prediction from the DFA, possibly extending the DFA through
ATN simulation in the process. Finally, since adaptivePredict
is looking ahead not parsing, it must undo any changes made

5 SLL prediction does not incorporate predicates for clarity in this exposition,
but in practice, ANTLR incorporates predicates into DFA accept states (Sec-
tion B.2). ANTLR 3 DFA used predicated edges not predicated accept states.

to the input cursor, which it does by capturing the input index
as start upon entry and rewinding to start before returning.

Function 2: adaptivePredict(A, γ0) returns int alt
start := input.index(); // checkpoint input
if ∃A→ πiαi then
alt := LLpredict(A, start, γ0);
input.seek(start); // undo stream position changes
return alt;

if @ dfaA then
D0 := startState(A, #);
FDFA := {fi | fi := DFA State(i)∀A→ αi};
QDFA := D0 ∪ FDFA ∪Derror;
dfaA:= DFA(QDFA,ΣDFA = T,∆DFA = ∅, D0, FDFA);

alt := SLLpredict(A, D0, start, γ0);
input.seek(start); // undo stream position changes
return alt;

Function startState. To create DFA start state D0, startState
(Function 3) adds configurations (pA,i, i, γ) for each A → αi
andA→ πi αi, if πi evaluates to true. When called from adap-
tivePredict, call stack argument γ is special symbol # needed
by SLL prediction, indicating “no parser stack information.”
When called from LLpredict, γ is initial parser stack γ0. Com-
puting closure of the configurations completes D0.

Function 3: startState(A, γ) returns DFA State D0

D0 := ∅;
foreach pA

ε−→ pA,i ∈ ∆ATN do
if pA

ε−→ pA,i
πi−→ p then π := πi else π := ε;

if π=ε or eval(πi) then D0+=closure({},D0,(pA,i,i,γ));
return D0;

Function SLLpredict. Function SLLpredict (Function 4)
performs both DFA and SLL ATN simulation, incrementally
adding paths to the DFA. In the best case, there is already a
DFA path from D0 to an accept state, fi, for prefix u � wr
and some production number i. In the worst-case, ATN sim-
ulation is required for all a in sequence u. The main loop in
SLLpredict finds an existing edge emanating from DFA state
cursor D upon a or computes a new one via target. It is possi-
ble that target will compute a target state that already exists in
the DFA, D′, in which case function target returns D′ because
D′ may already have outgoing edges computed; it is inefficient
to discard work by replacing D′. At the next iteration, SLLpre-
dict will consider edges from D′, effectively switching back to
DFA simulation.

Function 4: SLLpredict(A, D0, start, γ0) returns int prod
a := input.curr(); D = D0;
while true do

let D′ be DFA target D a−→ D′;
if @D′ then D′ := target(D, a);
if D′ = Derror then parse error;
if D′ stack sensitive then
input.seek(start); return LLpredict(A, start, γ0);

if D′ = fi ∈ FDFA then return i;
D := D′; a := input.next();

8 2014/3/24

Once SLLpredict acquires a target state, D′, it checks for er-
rors, stack sensitivity, and completion. If target marked D′ as
stack-sensitive, prediction requires full LL simulation and SLL-
predict calls LLpredict. If D′ is accept state fi, as determined
by target, SLLpredict returns i. In this case, all the configura-
tions in D′ predicted the same production i; further analysis is
unnecessary and the algorithm can stop. For any other D′, the
algorithm sets D to D′, gets the next symbol, and repeats.

Function target. Using a combined move-closure operation,
target discovers the set of ATN configurations reachable from
D upon a single terminal symbol a ∈ T . Function move com-
putes the configurations reachable directly upon a by traversing
a terminal edge:

move(D, a) = {(q, i,Γ) | p a−→ q, (p, i,Γ) ∈ D}

Those configurations and their closure formD′. IfD′ is empty,
no alternative is viable because none can match a from the
current state so target returns error state Derror. If all config-
urations in D′ predict the same production number i, target
adds edge D a−→ fi and returns accept state fi. If D′ has con-
flicting configurations, target marks D′ as stack-sensitive. The
conflict could be an ambiguity or a weakness stemming from
SLL’s lack of parser stack information. (Conflicts along with
getConflictSetsPerLoc and getProdSetsPerState are described
in Section 5.3.) The function finishes by adding state D′, if an
equivalent state,D′, is not already in the DFA, and adding edge
D

a−→ D′.

Function 5: target(D, a) returns DFA State D′

mv := move(D, a);
D′ :=

⋃
c∈mv

closure({}, c);

if D′ = ∅ then ∆DFA += D a−→ Derror; return Derror;
if {j | (−, j,−) ∈ D′} = {i} then

∆DFA += D a−→ fi; return fi; // Predict rule i
// Look for a conflict among configurations of D′

a conflict := ∃alts ∈getConflictSetsPerLoc(D′) : |alts|>1;
viablealt := ∃alts ∈ getProdSetsPerState(D′) : |alts| = 1;
if a conflict and not viablealt then

mark D′ as stack sensitive;
if D′ = D′ ∈ QDFA then D′ := D′; else QDFA += D′;
∆DFA += D a−→ D′;
return D′;

Function LLpredict. Upon SLL simulation conflict, SLLpre-
dict rewinds the input and calls LLpredict (Function 6) to get
a prediction based upon LL ATN simulation, which considers
the full parser stack γ0. Function LLpredict is similar to SLL-
predict. It uses DFA state D as a cursor and state D′ as the
transition target for consistency but does not update A’s DFA
so SLL prediction can continue to use the DFA. LL prediction
continues until either D′ = ∅, D′ uniquely predicts an alter-
native, or D′ has a conflict. If D′ from LL simulation has a
conflict as SLL did, the algorithm reports the ambiguous phrase
(input from start to the current index) and resolves to the mini-
mum production number among the conflicting configurations.

(Section 5.3 explains ambiguity detection.) Otherwise, cursor
D moves to D′ and considers the next input symbol.

Function 6: LLpredict(A, start, γ0) returns int alt
D := D0 := startState(A, γ0);
while true do

mv := move(D, input.curr());
D′ :=

⋃
c∈mv

closure({}, c);

if D′ = ∅ then parse error;
if {j | (−, j,−) ∈ D′} = {i} then return i;
/* If all p,Γ pairs predict > 1 alt and all such

production sets are same, input ambiguous. */
altsets := getConflictSetsPerLoc(D′);
if ∀x, y ∈ altsets, x = y and |x| > 1 then

x := any set in altsets;
report ambiguous alts x at start..input.index();
return min(x);

D := D′; input.advance();

Function closure. The closure operation (Function 7) chases
through all ε edges reachable from p, the ATN state projected
from configuration parameter c and also simulates the call and
return of submachines. Function closure treats µ and π edges
as ε edges because mutators should not be executed during
prediction and predicates are only evaluated during start state
computation. From parameter c = (p, i,Γ) and edge p ε−→ q,
closure adds (q, i,Γ) to local working set C. For submachine
call edge p

B−→ q, closure adds the closure of (pB , i, qΓ).
Returning from a submachine stop state p′B adds the closure of
configuration (q, i,Γ) in which case c would have been of the
form (p′B , i, qΓ). In general, a configuration stack Γ is a graph
representing multiple individual stacks. Function closure must
simulate a return from each of the Γ stack tops. The algorithm
uses notation qΓ′ ∈ Γ to represent all stack tops q of Γ. To
avoid non-termination due to SLL right recursion and ε edges
in subrules such as ()+, closure uses a busy set shared among
all closure operations used to compute the same D′.

When closure reaches stop state p′A for decision entry rule,
A, LL and SLL predictions behave differently. LL prediction
pops from the parser call stack γ0 and “returns” to the state that
invoked A’s submachine. SLL prediction, on the other hand,
has no access to the parser call stack and must consider all
possible A invocation sites. Function closure finds Γ = # (and
p′B = p′A) in this situation because startState will have set the
initial stack as # not γ0. The return behavior at the decision
entry rule is what differentiates SLL from LL parsing.

5.3 Conflict and ambiguity detection
The notion of conflicting configurations is central to ALL(*)
analysis. Conflicts trigger failover to full LL prediction dur-
ing SLL prediction and signal an ambiguity during LL pre-
diction. A sufficient condition for a conflict between config-
urations is when they differ only in the predicted alternative:
(p, i,Γ) and (p, j,Γ). Detecting conflicts is aided by two func-
tions. The first, getConflictSetsPerLoc (Function 8), collects the
sets of production numbers associated with all (p,−,Γ) config-
urations. If a p,Γ pair predicts more than a single production, a

9 2014/3/24

Function 7: closure(busy, c = (p, i,Γ)) returns set C
if c ∈ busy then return ∅; else busy += c;
C := {c};
if p = p′B (i.e., p is any stop state including p′A) then

if Γ = # (i.e., stack is SLL wildcard) then
C +=

⋃
∀ p2 : p1

B−→p2∈∆ATN

closure(busy, (p2, i,#)); // call site closure

else // nonempty SLL or LL stack
for qΓ′ ∈ Γ (i.e., each stack top q in graph Γ) do
C += closure(busy, (q, i,Γ′)); // “return” to q

return C;
end
foreach p edge−−−→ q do

switch edge do
case B: C += closure(busy, (pB , i, qΓ));
case π, µ, ε: C += closure(busy, (q, i,Γ));

return C;

conflict exists. Here is a sample configuration set and the asso-
ciated set of conflict sets:
{(p, 1,Γ), (p, 2,Γ), (p, 3,Γ)︸ ︷︷ ︸

{1,2,3}

, (p, 1,Γ′), (p, 2,Γ′)︸ ︷︷ ︸
{1,2}

, (r, 2,Γ′′)︸ ︷︷ ︸
{2}

}

These conflicts sets indicate that location p,Γ is reachable
from productions {1, 2, 3}, location p,Γ′ is reachable from
productions {1, 2}, and r,Γ′′ is reachable from production {2}.

// For each p,Γ get set of alts {i} from (p,−,Γ) ∈ D configs
Function 8: getConflictSetsPerLoc(D) returns set of sets
s := ∅;
for (p,−,Γ) ∈ D do prods := {i | (p, i,Γ)}; s := s ∪ prods;
return s;

The second function, getProdSetsPerState (Function 9), is
similar but collects the production numbers associated with just
ATN state p. For the same configuration set, getProdSetsPer-
State computes these conflict sets:
{(p, 1,Γ), (p, 2,Γ), (p, 3,Γ), (p, 1,Γ′), (p, 2,Γ′)︸ ︷︷ ︸

{1,2,3}

, (r, 2,Γ′′)︸ ︷︷ ︸
{2}

}

A sufficient condition for failing over to LL prediction (LL-
predict) from SLL would be when there is at least one set
of conflicting configurations: getConflictSetsPerLoc returns at
least one set with more than a single production number. E.g.,
configurations (p, i,Γ) and (p, j,Γ) exist in parameterD. How-
ever, our goal is to continue using SLL prediction as long as
possible because SLL prediction updates the lookahead DFA
cache. To that end, SLL prediction continues if there is at
least one nonconflicting configuration (when getProdSetsPer-
State returns at least one set of size 1). The hope is that more
lookahead will lead to a configuration set that predicts a unique
production via that nonconflicting configuration. For example,
the decision for S → a|a|a q

p b is ambiguous upon a between
productions 1 and 2 but is unambiguous upon ab. (Locationq
p is the ATN state between a and b.) After matching input a,
the configuration set would be {(p′S , 1, []), (p′S , 2, []), (p, 3, [])}.
Function getConflictSetsPerLoc returns {{1, 2}, {3}}. The next
move-closure upon b leads to nonconflicting configuration set
{(p′S , 3, [])} from (p, 3, []), bypassing the conflict. If all sets re-

turned from getConflictSetsPerLoc predict more than one alter-
native, no amount of lookahead will lead to a unique prediction.
Analysis must try again with call stack γ0 via LLpredict.

// For each p return set of alts i from (p,−,−) ∈ D configs.
Function 9: getProdSetsPerState(D) returns set of sets
s := ∅;
for (p,−,−) ∈ D do prods := {i | (p, i,−)}; s := s ∪ prods;
return s;

Conflicts during LL simulation are ambiguities and occur
when each conflict set from getConflictSetsPerLoc contains
more than 1 production—every location inD is reachable from
more than a 1 production. Once multiple subparsers reach the
same (p,−,Γ), all future simulation derived from (p,−,Γ) will
behave identically. More lookahead will not resolve the ambi-
guity. Prediction could terminate at this point and report looka-
head prefix u as ambiguous but LLpredict continues until it is
sure for which productions u is ambiguous. Consider conflict
sets {1,2,3} and {2,3}. Because both have degree greater than
one, the sets represent an ambiguity, but additional input will
identify whether u � wr is ambiguous upon {1,2,3} or {2,3}.
Function LLpredict continues until all conflict sets that identify
ambiguities are equal; condition x = y and |x| > 1 ∀x, y ∈
altsets embodies this test.

To detect conflicts, the algorithm compares graph-structured
stacks frequently. Technically, a conflict occurs when configu-
rations (p, i,Γ) and (p, j,Γ′) occur in the same configuration
set with i 6= j and at least one stack trace γ in common to
both Γ and Γ′. Because checking for graph intersection is ex-
pensive, the algorithm uses equality, Γ = Γ′, as a heuristic.
Equality is much faster because of the shared subgraphs. The
graph equality algorithm can often check node identity to com-
pare two entire subgraphs. In the worst case, the equality ver-
sus subset heuristic delays conflict detection until the GSS be-
tween conflicting configurations are simple linear stacks where
graph intersection is the same as graph equality. The cost of
this heuristic is deeper lookahead.

5.4 Sample DFA construction
To illustrate algorithm behavior, consider inputs bc and bd for
the grammar and ATN in Figure 8. ATN simulation for decision
S launches subparsers at left edge nodes pS,1 and pS,2 with
initial D0 configurations (pS,1, 1, []) and (pS,2, 2, []). Function
closure adds three more configurations to D0 as it “calls” A
with “return” nodes p1 and p3. Here is the DFA resulting from
ATN simulation upon bc and then bd (configurations added by
move are bold):

(pS,1,1, []), (pA, 1, p1), (pA,1, 1, p1), (pA,2, 1, p1)
(pS,2,2, []), (pA, 2, p3), (pA,1, 2, p3), (pA,2, 2, p3)

D0

(p7,1,p1), (p′A, 1, p1), (p1, 1, [])
(p7,2,p3), (p′A, 2, p3), (p3, 2, [])

D′

(p2,1, []), (p
′
S , 1, [])f1 (p4,2, []), (p

′
S , 2, []) f2

b

c d

After bc prediction, the DFA has states D0, D′, and f1. From
DFA state D′, closure reaches the end of A and pops from

10 2014/3/24

the Γ stacks, returning to ATN states in S. State f1 uniquely
predicts production number 1. State f2 is created and connected
to the DFA (shown with dashed arrow) during prediction of
the second phrase, bd. Function adaptivePredict first uses DFA
simulation to get toD′ fromD0 upon b. Before having seen bd,
D′ has no d edge so adaptivePredict must use ATN simulation
to add edge D′ d−→ f2.

6. Theoretical results
This section identifies the key ALL(*) theorems and shows
parser time complexity. See Appendix A for detailed proofs.
Theorem 6.1. (Correctness). The ALL(*) parser for non-left-
recursive G recognizes sentence w iff w ∈ L(G).
Theorem 6.2. ALL(*) languages are closed under union.
Theorem 6.3. ALL(*) parsing of n symbols has O(n4) time.
Theorem 6.4. A GSS has O(n) nodes for n input symbols.
Theorem 6.5. Two-stage parsing for non-left-recursive G rec-
ognizes sentence w iff w ∈ L(G).

7. Empirical results
We performed experiments to compare the performance of
ALL(*) Java parsers with other strategies, to examine ALL(*)
throughput for a variety of other languages, to highlight the
effect of the lookahead DFA cache on parsing speed, and to
provide evidence of linear ALL(*) performance in practice.

7.1 Comparing ALL(*)’s speed to other parsers
Our first experiment compared Java parsing speed across 10
tools and 8 parsing strategies: hand-tuned recursive-descent
with precedence parsing, LL(k), LL(*), PEG,LALR(1), ALL(*)
GLR, and GLL. Figure 9 shows the time for each tool to parse
the 12,920 source files of the Java 6 library and compiler. We
chose Java because it was the most commonly available gram-
mar among tools and sample Java source is plentiful. The Java
grammars used in this experiment came directly from the as-
sociated tool except for DParser and Elkhound, which did not
offer suitable Java grammars. We ported ANTLR’s Java gram-
mar to the meta-syntax of those tools using unambiguous arith-
metic expressions rules. We also embedded merge actions in
the Elkhound grammar to disambiguate during the parse to
mimic ANTLR’s ambiguity resolution. All input files were
loaded into RAM before parsing and times reflect the average
time measured over 10 complete corpus passes, skipping the
first two to ensure JIT compiler warm-up. For ALL(*), we used
the two-stage parse from Section 3.2. The test machine was a
6 core 3.33Ghz 16G RAM Mac OS X 10.7 desktop running
the Java 7 virtual machine. Elkhound and DParser parsers were
implemented in C/C++, which does not have a garbage collec-
tor running concurrently. Elkhound was last updated in 2005
and no longer builds on Linux or OS X, but we were able to
build it on Windows 7 (4 core 2.67Ghz 24G RAM). Elkhound
also can only read from a file so Elkhound parse times are not
comparable. In an effort to control for machine speed differ-
ences and RAM vs SSD, we computed the time ratio of our
Java test rig on our OS X machine reading from RAM to the

ANTLR4

Javac
ANTLR4

ANTLR4
JavaCC

Elkhound

ANTLR3

Rats!

SableCC
0

5

10

15

20

25

P
a
rs

e
 t

im
e
 (

se
c)

3.73s
4.73s 5.23s 5.71s 5.86s

7.65s 8.08s

12.16s

22.05s

es
ti
m
a
te
d

re
p
a
rs
in
g

Tests build trees when marked

 Elkhound

DParse
r
JSGLR

Rasca
l

0

100

200

300

400

500

600

700

800

25s
98s

487s

767sGLR and GLL

es
ti
m
a
te
d

~13
min

~8
min

Figure 9. Comparing Java parse times for 10 tools and 8 strate-
gies on Java 6 Library and compiler source code (smaller is
faster). 12,920 files, 3.6M lines, size 123M. Tool descriptors com-
prise: “tool name version [strategy].” ANTLR4 4.1 [ALL(*)]; Javac
7 [handbuilt recursive-descent and precedence parser for expres-
sions]; JavaCC 5.0 [LL(k)]; Elkhound 2005.08.22b [GLR] (tested
on Windows); ANTLR3 3.5 [LL(*)]; Rats! 2.3.1 [PEG]; SableCC 3.7
[LALR(1)]; DParser 1.2 [GLR]; JSGLR (from Spoofax) 1.1 [GLR];
Rascal 0.6.1 [GLL]. Tests run 10x with generous memory, average/st-
ddev computed on last 8 to avoid JIT cost. Error bars are negligible
but show some variability due to garbage collection. To avoid a log
scale, we use a separate graph for GLR, GLL parse times.

test rig running on Windows pulling from SSD. Our reported
Elkhound times are the Windows time multiplied by that OS X
to Windows ratio.

For this experiment, ALL(*) outperforms the other parser
generators and is only about 20% slower than the handbuilt
parser in the Java compiler itself. When comparing runs with
tree construction (marked with † in Figure 9), ANTLR 4 is
about 4.4x faster than Elkhound, the fastest GLR tool we tested,
and 135x faster than GLL (Rascal). ANTLR 4’s nondeterminis-
tic ALL(*) parser was slightly faster than JavaCC’s determinis-
tic LL(k) parser and about 2x faster than Rats!’s PEG. In a sep-
arate test, we found that ALL(*) outperforms Rats! on its own
PEG grammar converted to ANTLR syntax (8.77s vs 12.16s).
The LALR(1) parser did not perform well against the LL
tools but that could be SableCC’s implementation rather than
a deficiency of LALR(1). (The Java grammar from JavaCUP,
another LALR(1) tool, was incomplete and unable to parse
the corpus.) When reparsing the corpus, ALL(*) lookahead
gets cache hits at each decision and parsing is 30% faster at
3.73s. When reparsing with tree construction (time not shown),
ALL(*) outperforms handbuilt Javac (4.4s vs 4.73s). Reparsing
speed matters to tools such as development environments.

The GLR parsers we tested are up to two orders of magni-
tude slower at Java parsing than ALL(*). Of the GLR tools,
Elkhound has the best performance primarily because it re-
lies on a linear LR(1) stack instead of a GSS whenever pos-
sible. Further, we allowed Elkhound to disambiguate during
the parse like ALL(*). Elkhound uses a separate lexer, unlike
JSGLR and DParser, which are scannerless. A possible expla-
nation for the observed performance difference with ALL(*) is
that the Java grammar we ported to Elkhound and DParser is
biased towards ALL(*), but this objection is not well-founded.
GLR should also benefit from highly-deterministic and unam-
biguous grammars. GLL has the slowest speed in this test per-
haps because Rascal’s team ported SDF’s GLR Java grammar,

11 2014/3/24

Tool Time RAM (M)
Javac† 89 ms 7

ANTLR4 201 ms 8
JavaCC 206 ms 7

ANTLR4† 360 ms 8
ANTLR3 1048 ms 143
SableCC† 1,174 ms 201

Rats!† 1,365 ms 22
JSGLR† 15.4 sec 1,030
Rascal† 24.9 sec 2,622

(no DFA) ANTLR4 42.5 sec 27
elkhounda 3.35 min 3

DParser† 10.5 hours 100+
elkhound† out of mem 5390+

Figure 10. Time and space to parse and optionally build trees for
3.2M Java file. Space is median reported after GC during parse using
-XX:+PrintGC option (process monitoring for C++). Times include
lexing; all input preloaded. †Building trees. aDisambiguating during
the parse, no trees, estimated time.

which is not optimized for GLL (Grammar variations can af-
fect performance.) Rascal is also scannerless and is currently
the only available GLL tool.

The biggest issue with general algorithms is that they are
highly unpredictable in time and space, which can make them
unsuitable for some commercial applications. Figure 10 sum-
marizes the performance of the same tools against a single
3.2M Java file. Elkhound took 7.65s to parse the 123M Java
corpus, but took 3.35 minutes to parse the 3.2M Java file. It
crashed (out of memory) with parse forest construction on.
DParser’s time jumped from a corpus time of 98s to 10.5 hours
on the 3.2M file. The speed of Rascal and JSGLR scale reason-
ably well to the 3.2M file, but use 2.6G and 1G RAM, respec-
tively. In contrast, ALL(*) parses the 3.2M file in 360ms with
tree construction using 8M. ANTLR 3 is fast but is slower and
uses more memory (due to backtracking memoization) than
ANTLR 4.

7.2 ALL(*) performance across languages
Figure 11 gives the bytes-per-second throughput of ALL(*)
parsers for 8 languages, including Java for comparison. The
number of test files and file sizes vary greatly (according to the
input we could reasonably collect); smaller files yield higher
parse-time variance.
• C Derived from C11 specification; has no indirect left-recursion,

altered stack-sensitive rule to render SLL (see text below): 813
preprocessed files, 159.8M source from postgres database.
• Verilog2001 Derived from Verilog 2001 spec, removed indirect

left-recursion: 385 files, 659k from [3] and web.
• JSON Derived from spec. 4 files, 331k from twitter.
• DOT: Derived from spec. 48 files 19.5M collected from web.
• Lua: Derived from Lua 5.2 spec. 751 files, 123k from github.
• XML Derived from spec. 1 file, 117M from XML benchmark.
• Erlang Derived from LALR(1) grammar. 500 preproc’d files, 8M.

Some of these grammars yield reasonable but much slower
parse times compared to Java and XML but demonstrate that
programmers can convert a language specification to ANTLR’s
meta-syntax and get a working grammar without major modi-

Grammar KB/sec
XML 45,993
Java 24,972
JSON 17,696
DOT 16,152
Lua 5,698
C 4,238
Verilog2001 1,994
Erlang 751

Figure 11. Throughput in
KByte/sec. Lexing+parsing;
all input preloaded into RAM.

0 100 200 300 400 500 600 700 800
Files parsed

0

20

40

60

80

100

N
o
.
D

F
A

 s
ta

te
s

x
1
0
0
0

Erlang

C

Lua

Verilog2001

Figure 12. DFA growth rate
vs number of files parsed. Files
parsed in disk order.

fications. (In our experience, grammar specifications are rarely
tuned to a particular tool or parsing strategy and are often am-
biguous.) Later, programmers can use ANTLR’s profiling and
diagnostics to improve performance, as with any programming
task. For example, the C11 specification grammar is LL not SLL
because of rule declarationSpecifiers, which we altered
to be SLL in our C grammar (getting a 7x speed boost).

7.3 Effect of lookahead DFA on performance
The lookahead DFA cache is critical to ALL(*) performance.
To demonstrate the cache’s effect on parsing speed, we disabled
the DFA and repeated our Java experiments. Consider the 3.73s
parse time from Figure 9 to reparse the Java corpus with pure
cache hits. With the lookahead DFA cache disabled completely,
the parser took 12 minutes (717.6s). Figure 10 shows that dis-
abling the cache increases parse time from 203ms to 42.5s on
the 3.2M file. This performance is in line with the high cost of
GLL and GLR parsers that also do not reduce parser specula-
tion by memoizing parsing decisions. As an intermediate value,
clearing the DFA cache before parsing each corpus file yields a
total time of 34s instead of 12 minutes. This isolates cache use
to a single file and demonstrates that cache warm-up occurs
quickly even within a single file.

DFA size increases linearly as the parser encounters new
lookahead phrases. Figure 12 shows the growth in the number
of DFA states as the (slowest four) parsers from Figure 11
encounter new files. Languages like C that have constructs with
common left-prefixes require deep lookahead in LL parsers to
distinguish phrases; e.g., struct {...} x; and struct {...}
f(); share a large left-prefix. In contrast, the Verilog2001
parser uses very few DFA states (but runs slower due to a non-
SLL rule). Similarly, after seeing the entire 123M Java corpus,
the Java parser uses just 31,626 DFA states, adding an average
of ˜2.5 states per file parsed. DFA size does, however, continue
to grow as the parser encounters unfamiliar input. Programmers
can clear the cache and ALL(*) will adapt to subsequent input.

7.4 Empirical parse-time complexity
Given the wide range of throughput in Figure 11, one could
suspect nonlinear behavior for the slower parsers. To investi-
gate, we plotted parse time versus file size in Figure 13 and
drew least-squares regression and LOWESS [6] data fitting
curves. LOWESS curves are parametrically unconstrained (not
required to be a line or any particular polynomial) and they vir-

12 2014/3/24

0 100 200 300 400 500 600
0

20
40
60
80

100
120
140
160

P
a
rs

e
 t

im
e
 (

m
s)

740 C files

0 1 2 3 4 5 6
0
2
4
6
8

10
12
14

385 Verilog2001 files

0 20 40 60 80 100 120 140
File size (KB)

0

20

40

60

80

100

P
a
rs

e
 t

im
e
 (

m
s)

500 Erlang files

Regression

LOWESS

0 5 10 15 20 25 30 35
File size (KB)

0
2
4
6
8

10
12

642 Lua files

Figure 13. Linear parse time vs file size. Linear regression (dashed
line) and LOWESS unconstrained curve coincide, giving strong evi-
dence of linearity. Curves computed on (bottom) 99% of file sizes but
zooming in to show detail in the bottom 40% of parse times.

tually mirrors each regression line, providing strong evidence
that the relationship between parse time and input size is linear.
The same methodology shows that the parser generated from
the non-SLL grammar (not shown) taken from the C11 speci-
fication is also linear, despite being much slower than our SLL
version.

We have yet to see nonlinear behavior in practice but the the-
oretical worst-case behavior of ALL(*) parsing is O(n4). Ex-
perimental parse-time data for the following contrived worst-
case grammar exhibits quartic behavior for input a, aa, aaa,
..., an (with n ≤ 120 symbols we could test in a reasonable
amount of time). S → A $, A → aAA | aA | a. The gener-
ated parser requires a prediction upon each input symbol and
each prediction must examine all remaining input. The closure
operation performed for each input symbol must examine the
entire depth of the GSS, which could be size n. Finally, merg-
ing two GSS can take O(n) in our implementation, yielding
O(n4) complexity.

From these experiments, we conclude that shifting gram-
mar analysis to parse-time to get ALL(*) strength is not only
practical but yields extremely efficient parsers, competing with
the hand-tuned recursive-descent parser of the Java compiler.
Memoizing analysis results with DFA is critical to such per-
formance. Despite O(n4) theoretical complexity, ALL(*) ap-
pears to be linear in practice and does not exhibit the unpre-
dictable performance or large memory footprint of the general
algorithms.

8. Related work
For decades, researchers have worked towards increasing the
recognition strength of efficient but non-general LL and LR
parsers and increasing the efficiency of general algorithms such
as Earley’s O(n3) algorithm [8]. Parr [21] and Charles [4] stat-
ically generated LL(k) and LR(k) parsers for k > 1. Parr and
Fisher’s LL(*) [20] and Bermudez and Schimpf’s LAR(m) [2]
statically computed LL and LR parsers augmented with cyclic
DFA that could examine arbitrary amounts of lookahead. These
parsers were based upon LL-regular [12] and LR-regular [7]
parsers, which have the undesirable property of being unde-
cidable in general. Introducing backtracking dramatically in-

creases recognition strength and avoids static grammar analy-
sis undecidability issues but is undesirable because it has em-
bedded mutators issues, reduces performance, and complicates
single-step debugging. Packrat parsers (PEGs) [9] try decision
productions in order and pick the first that succeeds. PEGs are
O(n) because they memoize partial parsing results but suffer
from the a | ab quirk where ab is silently unmatchable.

To improve general parsing performance, Tomita [26] intro-
duced GLR, a general algorithm based upon LR(k) that concep-
tually forks subparsers at each conflicting LR(k) state at parse-
time to explore all possible paths. Tomita shows GLR to be
5x-10x faster than Earley. A key component of GLR parsing is
the graph-structured stack (GSS) [26] that prevents parsing the
same input twice in the same way. (GLR pushes input symbols
and LR states on the GSS whereas ALL(*) pushes ATN states.)
Elkhound [18] introduced hybrid GLR parsers that use a sin-
gle stack for all LR(1) decisions and a GSS when necessary to
match ambiguous portions of the input. (We found Elkhound’s
parsers to be faster than those of other GLR tools.) GLL [25]
is the LL analog of GLR and also uses subparsers and a GSS to
explore all possible paths; GLL uses k = 1 lookahead where
possible for efficiency. GLL is O(n3) and GLR is O(np+1)
where p is the length of the longest grammar production.

Earley parsers scale gracefully from O(n) for deterministic
grammars to O(n3) in the worst case for ambiguous grammars
but performance is not good enough for general use. LR(k)
state machines can improve the performance of such parsers
by statically computing as much as possible. LRE [16] is one
such example. Despite these optimizations, general algorithms
are still very slow compared to deterministic parsers augmented
with deep lookahead.

The problem with arbitrary lookahead is that it is impossi-
ble to compute statically for many useful grammars (the LL-
regular condition is undecidable.) By shifting lookahead anal-
ysis to parse-time, ALL(*) gains the power to handle any gram-
mar without left recursion because it can launch subparsers
to determine which path leads to a valid parse. Unlike GLR,
speculation stops when all remaining subparsers are associated
with a single alternative production, thus, computing the mini-
mum lookahead sequence. To get performance, ALL(*) records
a mapping from that lookahead sequence to the predicted pro-
duction using a DFA for use by subsequent decisions. The
context-free language subsets encountered during a parse are
finite and, therefore, ALL(*) lookahead languages are regular.
Ancona et al [1] also performed parse-time analysis, but they
only computed fixed LR(k) lookahead and did not adapt to the
actual input as ALL(*) does. Perlin [23] operated on an RTN
like ALL(*) and computed k = 1 lookahead during the parse.

ALL(*) is similar to Earley in that both are top-down and
operate on a representation of the grammar at parse-time, but
Earley is parsing not computing lookahead DFA. In that sense,
Earley is not performing grammar analysis. Earley also does
not manage an explicit GSS during the parse. Instead, items in
Earley states have “parent pointers” that refer to other states
that, when threaded together, form a GSS. Earley’s SCANNER
operation correspond to ALL(*)’s move function. The PREDIC-

13 2014/3/24

TOR and COMPLETER operations correspond to push and pop
operations in ALL(*)’s closure function. An Earley state is the
set of all parser configurations reachable at some absolute input
depth whereas an ALL(*) DFA state is a set of configurations
reachable from a lookahead depth relative to the current deci-
sion. Unlike the completely general algorithms, ALL(*) seeks
a single parse of the input, which allows the use of an efficient
LL stack during the parse.

Parsing strategies that continuously speculate or support
ambiguity have difficulty with mutators because they are hard
to undo. A lack of mutators reduces the generality of seman-
tic predicates that alter the parse as they cannot test arbitrary
state computed previously during the parse. Rats! [10] sup-
ports restricted semantic predicates and Yakker [13] supports
semantic predicates that are functions of previously-parsed ter-
minals. Because ALL(*) does not speculate during the actual
parse, it supports arbitrary mutators and semantic predicates.
Space considerations preclude a more detailed discussion of
related work here; a more detailed analysis can be found in ref-
erence [20].

9. Conclusion
ANTLR 4 generates an ALL(*) parser for any CFG without in-
direct or hidden left-recursion. ALL(*) combines the simplicity,
efficiency, and predictability of conventional top-down LL(k)
parsers with the power of a GLR-like mechanism to make pars-
ing decisions. The critical innovation is to shift grammar anal-
ysis to parse-time, caching analysis results in lookahead DFA
for efficiency. Experiments show ALL(*) outperforms general
(Java) parsers by orders of magnitude, exhibiting linear time
and space behavior for 8 languages. The speed of the ALL(*)
Java parser is within 20% of the Java compiler’s hand-tuned
recursive-descent parser. In theory, ALL(*) is O(n4), inline
with the low polynomial bound of GLR. ANTLR is widely
used in practice, indicating that ALL(*) provides practical pars-
ing power without sacrificing the flexibility and simplicity of
recursive-descent parsers desired by programmers.

10. Acknowledgments
We thank Elizabeth Scott, Adrian Johnstone, and Mark Johnson
for discussions on parsing algorithm complexity. Eelco Visser
and Jurgen Vinju provided code to test isolated parsers from JS-
GLR and Rascal. Etienne Gagnon generated SableCC parsers.

References
[1] ANCONA, M., DODERO, G., GIANUZZI, V., AND MORGAVI,

M. Efficient construction of LR(k) states and tables. ACM
Trans. Program. Lang. Syst. 13, 1 (Jan. 1991), 150–178.

[2] BERMUDEZ, M. E., AND SCHIMPF, K. M. Practical arbitrary
lookahead LR parsing. Journal of Computer and System Sci-
ences 41, 2 (1990).

[3] BROWN, S., AND VRANESIC, Z. Fundamentals of Digital Logic
with Verilog Design. McGraw-Hill series in ECE. 2003.

[4] CHARLES, P. A Practical Method for Constructing Efficient
LALR(k) Parsers with Automatic Error Recovery. PhD thesis,
New York University, New York, NY, USA, 1991.

[5] CLARKE, K. The top-down parsing of expressions. Unpub-
lished technical report, Dept. of Computer Science and Statistics,
Queen Mary College, London, June 1986.

[6] CLEVELAND, W. S. Robust Locally Weighted Regression and
Smoothing Scatterplots. Journal of the American Statistical
Association 74 (1979), 829–836.

[7] COHEN, R., AND CULIK, K. LR-Regular grammars—an exten-
sion of LR(k) grammars. In SWAT ’71 (Washington, DC, USA,
1971), IEEE Computer Society, pp. 153–165.

[8] EARLEY, J. An efficient context-free parsing algorithm. Com-
munications of the ACM 13, 2 (1970), 94–102.

[9] FORD, B. Parsing Expression Grammars: A recognition-based
syntactic foundation. In POPL (2004), ACM Press, pp. 111–122.

[10] GRIMM, R. Better extensibility through modular syntax. In
PLDI (2006), ACM Press, pp. 38–51.

[11] HOPCROFT, J., AND ULLMAN, J. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley, Reading,
Massachusetts, 1979.

[12] JARZABEK, S., AND KRAWCZYK, T. LL-Regular grammars.
Information Processing Letters 4, 2 (1975), 31 – 37.

[13] JIM, T., MANDELBAUM, Y., AND WALKER, D. Semantics and
algorithms for data-dependent grammars. In POPL (2010).

[14] JOHNSON, M. The computational complexity of GLR parsing.
In Generalized LR Parsing, M. Tomita, Ed. Kluwer, Boston,
1991, pp. 35–42.

[15] KIPPS, J. Generalized LR Parsing. Springer, 1991, pp. 43–59.

[16] MCLEAN, P., AND HORSPOOL, R. N. A faster Earley parser. In
CC (1996), Springer, pp. 281–293.

[17] MCPEAK, S. Elkhound: A fast, practical GLR parser genera-
tor. Tech. rep., University of California, Berkeley (EECS), Dec.
2002.

[18] MCPEAK, S., AND NECULA, G. C. Elkhound: A fast, practical
GLR parser generator. In CC (2004), pp. 73–88.

[19] PARR, T. The Definitive ANTLR Reference: Building Domain-
Specific Languages. The Pragmatic Programmers, 2013. ISBN
978-1-93435-699-9.

[20] PARR, T., AND FISHER, K. LL(∗): The Foundation of the
ANTLR Parser Generator. In PLDI (2011), pp. 425–436.

[21] PARR, T. J. Obtaining practical variants of LL(k) and LR(k)
for k > 1 by splitting the atomic k-tuple. PhD thesis, Purdue
University, West Lafayette, IN, USA, 1993.

[22] PARR, T. J., AND QUONG, R. W. Adding Semantic and Syntac-
tic Predicates to LL(k)—pred-LL(k). In CC (1994).

[23] PERLIN, M. LR recursive transition networks for Earley and
Tomita parsing. In Proceedings of the 29th Annual Meeting
on Association for Computational Linguistics (1991), ACL ’91,
pp. 98–105.

[24] PLEVYAK, J. DParser: GLR parser generator, Visited Oct. 2013.

[25] SCOTT, E., AND JOHNSTONE, A. GLL parsing. Electron. Notes
Theor. Comput. Sci. 253, 7 (Sept. 2010), 177–189.

[26] TOMITA, M. Efficient Parsing for Natural Language. Kluwer
Academic Publishers, 1986.

[27] WOODS, W. A. Transition network grammars for natural lan-
guage analysis. Comm. of the ACM 13, 10 (1970), 591–606.

14 2014/3/24

A. Correctness and complexity analysis
Theorem A.1. ALL(*) languages are closed under union.

Proof. Let predicated grammarsG1 = (N1, T, P1, S1,Π1,M1)
andG2 = (N2, T, P2, S2,Π2,M2) describe L(G1) and L(G2),
respectively. For applicability to both parsers and scannerless
parsers, assume that the terminal space T is the set of valid
characters. Assume N1∩N2 = ∅ by renaming nonterminals if
necessary. Assume that the predicates and mutators of G1 and
G2 operate in disjoint environments, S1 and S2. Construct:

G′ = (N1 ∪N2, T, P1 ∪ P2, S
′,Π1 ∪Π2,M1 ∪M2)

with S′ = S1 |S2. Then, L(G′) = L(G1) ∪ L(G2).

Lemma A.1. The ALL(*) parser for non-left-recursive G with
lookahead DFA deactivated recognizes sentence w iff w ∈
L(G).

Proof. The ATN for G recognizes w iff w ∈ L(G). There-
fore, we can equivalently prove that ALL(*) is a faithful imple-
mentation of an ATN. Without lookahead DFA, prediction is a
straightforward ATN simulator: a top-down parser that makes
accurate parsing decisions using GLR-like subparsers that can
examine the entire remaining input and ATN submachine call
stack.

Theorem A.2. (Correctness). The ALL(*) parser for non-left-
recursive G recognizes sentence w iff w ∈ L(G).

Proof. Lemma A.1 shows that an ALL(*) parser correctly rec-
ognizes w without the DFA cache. The essence of the proof
then is to show that ALL(*)’s adaptive lookahead DFA do not
break the parse by giving different prediction decisions than
straightforward ATN simulation. We only need to consider the
case of unpredicated SLL parsing as ALL(*) only caches deci-
sion results in this case.

if case: By induction on the state of the lookahead DFA for
any given decision A. Base case. The first prediction for A be-
gins with an empty DFA and must activate ATN simulation to
choose alternative αi using prefix u � wr. As ATN simulation
yields proper predictions, the ALL(*) parser correctly predicts
αi from a cold start and then records the mapping from u : i
in the DFA. If there is a single viable alternative, i is the as-
sociated production number. If ATN simulation finds multiple
viable alternatives, i is the minimum production number asso-
ciated with alternatives from that set.

Induction step. Assume the lookahead DFA correctly pre-
dicts productions for every u prefix of wr seen by the parser at
A. We must show that starting with an existing DFA, ALL(*)
properly adds a path through the DFA for unfamiliar u prefix
of w′r. There are several cases:

1. u � w′r and u � wr for a previous wr. The lookahead DFA
gives the correct answer for u by induction assumption. The
DFA is not updated.

2. w′r = bx and all previous wr = ay for some a 6= b. This
case reduces to the cold-start base case because there is no
D0

b−→ D edge. ATN simulation predicts αi and adds path
for u � w′r from D0 to fi.

3. w′r = vax and wr = vby for some previously seen wr with
common prefix v and a 6= b. DFA simulation reaches D
from D0 for input v. D has an edge for b but not a. ATN
simulation predicts αi and augments the DFA, starting with
an edge on a from D leading eventually to fi.

only if case: The ALL(*) parser reports a syntax error for
w /∈ L(G). Assume the opposite, that the parser successfully
parses w. That would imply that there exists an ATN configu-
ration derivation sequence (S, pS , [], w) 7→∗ (S′, p′S , [], ε) for w
through G’s corresponding ATN. But that would require w ∈
L(G), by Definition ??. Therefore the ALL(*) parser reports a
syntax error forw. The accuracy of the ALL(*) lookahead cache
is irrelevant because there is no possible path through the ATN
or parser.

Lemma A.2. The set of viable productions for LL is always a
subset of SLL’s viable productions for a given decision A and
remaining input string wr.

Proof. If the key move-closure analysis operation does not
reach stop state p′A for submachine A, SLL and LL behave
identically and so they share the same set of viable produc-
tions.

If closure reaches the stop state for the decision entry rule,
p′A, there are configurations of the form (p′A,−, γ) where, for
convenience, the usual GSS Γ is split into single stacks, γ. In
LL prediction mode, γ = γ0, which is either a single stack or
empty if A = S. In SLL mode, γ = #, signaling no stack
information. Function closure must consider all possible γ0

parser call stacks. Since any single stack must be contained
within the set of all possible call stacks, LL closure operations
consider at most the same number of paths through the ATN as
SLL.

Lemma A.3. For w 6∈ L(G) and non-left-recursive G, SLL
reports a syntax error.

Proof. As in the only if case of Theorem 6.1, there is no valid
ATN configuration derivation for w regardless of how adap-
tivePredict chooses productions.

Theorem A.3. Two-stage parsing for non-left-recursiveG rec-
ognizes sentence w iff w ∈ L(G).

Proof. By Lemma A.3, SLL and LL behave the same when
w 6∈ L(G). It remains to show that SLL prediction either
behaves like LL for input w ∈ L(G) or reports a syntax error,
signalling a need for the LL second stage. Let V and V ′ be
the set of viable production numbers for A using SLL and LL,
respectively. By Lemma A.2, V ′ ⊆ V . There are two cases to
consider:

15 2014/3/24

1. If min(V) = min(V ′), SLL and LL choose the same pro-
duction. SLL succeeds for w. E.g., V = {1, 2, 3} and V ′ =
{1, 3} or V = {1} and V ′ = {1}.

2. If min(V) 6= min(V ′) then min(V) 6∈ V ′ because LL finds
min(V) nonviable. SLL would report a syntax error. E.g.,
V = {1, 2, 3} and V ′ = {2, 3} or V = {1, 2} and V ′ = {2}.

In all possible combinations of V and V ′, SLL behaves like LL
or reports a syntax error for w ∈ L(G).

Theorem A.4. A GSS has O(n) nodes for n input symbols.

Proof. For nonterminals N and ATN states Q, there are |N | ×
|Q| p A−→ q ATN transitions if every every grammar position
invokes every nonterminal. That limits the number of new GSS
nodes to |Q|2 for a closure operation (which cannot transition
terminal edges). ALL(*) performs n + 1 closures for n input
symbols giving |Q|2(n + 1) nodes or O(n) as Q is not a
function of the input.

Lemma A.4. Examining a lookahead symbol has O(n2) time.

Proof. Lookahead is a move-closure operation that computes
new target DFA state D′ as a function of the ATN configu-
rations in D. There are |Q| × m ≈ |Q|2 configurations of
the form (p, i,) ∈ D for |Q| ATN states and m alternative
productions in the current decision. The cost of move is not
a function of input size n. Closure of D computes closure(c)
∀ c ∈ D and closure(c) can walk the entire GSS back to the
root (the empty stack). That gives a cost of |Q|2 configurations
times |Q|2(n+ 1) GSS nodes (per Theorem A.4) or O(n) add
operations to build D′. Adding a configuration is dominated
by the graph merge, which (in our implementation) is propor-
tional to the depth of the graph. The total cost for move-closure
is O(n2).

Theorem A.5. ALL(*) parsing of n input symbols has O(n4)
time.

Proof. Worst case, the parser must examine all remaining in-
put symbols during prediction for each of n input symbols giv-
ing O(n2) lookahead operations. The cost of each lookahead
operation is O(n2) by Lemma A.4 giving overall parsing cost
O(n4).

B. Pragmatics
This section describes some of the practical considerations
associated with implementing the ALL(*) algorithm.

B.1 Reducing warm-up time
Many decisions in a grammar are LL(1) and they are easy
to identify statically. Instead of always generating “switch on
adaptivePredict” decisions in the recursive-descent parsers,
ANTLR generates “switch on token type” decisions whenever
possible. This LL(1) optimization does not affect the size of
the generated parser but reduces the number of lookahead DFA
that the parser must compute.

Originally, we anticipated “training” a parser on a large
input corpus and then serializing the lookahead DFA to disk to
avoid re-computing DFA for subsequent parser runs. As shown
in the Section 7, lookahead DFA construction is fast enough
that serializing and deserializing the DFA is unnecessary.

B.2 Semantic predicate evaluation
For clarity, the algorithm described in this paper uses pure
ATN simulation for all decisions that have semantic predicates
on production left edges. In practice, ANTLR uses lookahead
DFA that track predicates in accept states to handle semantic-
context-sensitive prediction. Tracking the predicates in the
DFA allows prediction to avoid expensive ATN simulation if
predicate evaluation during SLL simulation predicts a unique
production. Semantic predicates are not common but are crit-
ical to solving some context-sensitive parsing problems; e.g.,
predicates are used internally by ANTLR to encode operator
precedence when rewriting left-recursive rules. So it is worth
the extra complexity to evaluate predicates during SLL predic-
tion. Consider the predicated rule from Section 2.1:

id : ID | {!enum is keyword}? ’enum’ ;

The second production is viable only when !enum is keyword

evaluates to true. In the abstract, that means the parser would
need two lookahead DFA, one per semantic condition. In-
stead, ANTLR’s ALL(*) implementation creates a DFA (via
SLL prediction) with edge D0

enum−−−→ f2 where f2 is an
augmented DFA accept state that tests !enum is keyword.
Function adaptivePredict returns production 2 upon enum if
!enum is keyword else throws a no-viable-alternative excep-
tion.

The algorithm described in this paper also does not sup-
port semantic predicates outside of the decision entry rule. In
practice, ALL(*) analysis must evaluate all predicates reachable
from the decision entry rule without stepping over a terminal
edge in the ATN. For example, the simplified ALL(*) algorithm
in this paper considers only predicates π1 and π2 for the pro-
ductions of S in the following (ambiguous) grammar.
S → {π1}?Ab | {π2}?Ab
A→ {π3}?a | {π4}?a
Input ab matches either alternative of S and, in practice,
ANTLR evaluates “π1 and (π3 or π4)” to test the viability
of S’s first production not just π1. After simulating S and
A’s ATN submachines, the lookahead DFA for S would be
D0

a−→ D′
b−→ f1,2. Augmented accept state f1,2 predicts pro-

ductions 1 or 2 depending on semantic contexts π1 ∧ (π3 ∨ π4)
and π2 ∧ (π3 ∨ π4), respectively. To keep track of semantic
context during SLL simulation, ANTLR ATN configurations
contain extra element π: (p, i,Γ, π). Element π carries along
semantic context and ANTLR stores predicate-to-production
pairs in the augmented DFA accept states.

B.3 Error reporting and recovery
ALL(*) prediction can scan arbitrarily far ahead so erro-
neous lookahead sequences can be long. By default, ANTLR-
generated parsers print the entire sequence. To recover, parsers
consume tokens until a token appears that could follow the

16 2014/3/24

current rule. ANTLR provides hooks to override reporting and
recovery strategies.

ANTLR parsers issue error messages for invalid input
phrases and attempt to recover. For mismatched tokens, ANTLR
attempts single token insertion and deletion to resynchronize. If
the remaining input is not consistent with any production of the
current nonterminal, the parser consumes tokens until it finds
a token that could reasonably follow the current nonterminal.
Then the parser continues parsing as if the current nonterminal
had succeeded. ANTLR improves error recovery over ANTLR
3 for EBNF subrules by inserting synchronization checks at the
start and at the “loop” continuation test to avoid prematurely
exiting the subrule. For example, consider the following class
definition rule.
classdef : ’class’ ID ’{’ member+ ’}’ ;

member : ’int’ ID ’;’ ;

An extra semicolon in the member list such as int i;; int

j; should not force surrounding rule classdef to abort. In-
stead, the parser ignores the extra semicolon and looks for an-
other member. To reduce cascading error messages, the parser
issues no further messages until it correctly matches a token.

B.4 Multi-threaded execution
Applications often require parallel execution of multiple parser
instances, even for the same language. For example, web-based
application servers parse multiple incoming XML or JSON
data streams using multiple instances of the same parser. For
memory efficiency, all ALL(*) parser instances for a given lan-
guage must share lookahead DFA. The Java code that ANTLR
generates uses a shared memory model and threads for con-
currency, which means parsers must update shared DFA in
a thread-safe manner. Multiple threads can be simulating the
DFA while other threads are adding states and edges to it. Our
goal is thread safety, but concurrency also provides a small
speed up for lookahead DFA construction (observed empiri-
cally).

The key to thread safety in Java while maintaining high
throughput lies in avoiding excessive locking (synchronized
blocks). There are only two data structures that require locking:
Q, the set of DFA states, and ∆, the set of edges. Our imple-
mentation factors state addition,Q +=D′, into an addDFAState
function that waits on a lock for Q before testing a DFA state
for membership or adding a state. This is not a bottleneck as
DFA simulation can proceed during DFA construction with-
out locking since it traverses edges to visit existing DFA states
without examining Q.

Adding DFA edges to an existing state requires fine-grained
locking, but only on that specific DFA state as our implemen-
tation maintains an edge array for each DFA state. We allow
multiple readers but a single writer. A lock on testing the edges
is unnecessary even if another thread is racing to set that edge.
If edge D a−→ D′ exists, the simulation simply transitions to
D′. If simulation does not find an existing edge, it launches
ATN simulation starting from D to compute D′ and then sets
element edge[a] for D. Two threads could find a missing edge
on a and both launch ATN simulation, racing to add D a−→ D′.

D′ would be the same in either case so there is no hazard as
long as that specific edge array is updated safely using syn-
chronization. To encounter a contested lock, two or more ATN
simulation threads must try to add an edge to the same DFA
state.

C. Left-recursion elimination
ANTLR supports directly left-recursive rules by rewriting them
to a non-left-recursive version that also removes any ambigu-
ities. For example, the natural grammar for describing arith-
metic expression syntax is one of the most common (ambigu-
ous) left-recursive rules. The following grammar supports sim-
ple modulo and additive expressions.

E → E%E |E+E | id

E is directly left-recursive because at least one production
begins with E (∃E ⇒ Eα), which is a problem for top-down
parsers.

Grammars meant for top-down parsers must use a cumber-
some non-left-recursive equivalent instead that has a separate
nonterminal for each level of operator precedence:

E′ →M (+ M)∗ Additive, lower precedence
M → P (% P)∗ Modulo, higher precedence
P → id Primary (id means identifier)

The deeper the rule invocation, the higher the precedence.
At parse-time, matching a single identifier, a, requires l rule
invocations for l precedence levels.
E is easier to read than E′, but the left-recursive version

is ambiguous as there are two interpretations of input a+b+c:
(a+b)+c and a+(b+c). Bottom-up parser generators such as
bison use operator precedence specifiers (e.g., %left ’%’) to
resolve such ambiguities. The non-left-recursive grammar E′

is unambiguous because it implicitly encodes precedence rules
according to the nonterminal nesting depth.

Ideally, a parser generator would support left-recursion and
provide a way to resolve ambiguities implicitly with the gram-
mar itself without resorting to external precedence specifiers.
ANTLR does this by rewriting nonterminals with direct left-
recursion and inserting semantic predicates to resolve ambigu-
ities according to the order of productions. The rewriting pro-
cess leads to generated parsers that mimic Clarke’s [5] tech-
nique.

We chose to eliminate just direct left-recursion because gen-
eral left-recursion elimination can result in transformed gram-
mars orders of magnitude larger than the original [11] and
yields parse trees only loosely related to those of the origi-
nal grammar. ANTLR automatically constructs parse trees ap-
propriate for the original left-recursive grammar so the pro-
grammer is unaware of the internal restructuring. Direct left-
recursion also covers the most common grammar cases (from
long experience building grammars). This discussion focuses
on grammars for arithmetic expressions, but the transformation
rules work just as well for other left-recursive constructs such
as C declarators: D → ∗ D, D → D [], D → D (), D → id.

17 2014/3/24

Eliminating direct left-recursion without concern for ambi-
guity is straightforward [11]. Let A → αj for j = 1..s be the
non-left-recursive productions and A → Aβk for k = 1..r be
the directly left-recursive productions where αj , βk 6⇒∗ ε. Re-
place those productions with:

A→ α1A
′|...|αsA′

A′ → β1A
′|...|βrA′|ε

The transformation is easier to see using EBNF:

A→ A′A′′∗

A′ → α1|...|αs
A′′ → β1|...|βr

or just A → (α1|...|αs)(β1|...|βr)∗. For example, the left-
recursive E rule becomes:

E → id (% E |+ E)∗

This non-left-recursive version is still ambiguous because there
are two derivations for a+b+c. The default ambiguity resolution
policy chooses to match input as soon as possible, resulting in
interpretation (a+b)+c.

The difference in associativity does not matter for expres-
sions using a single operator, but expressions with a mixture of
operators must associate operands and operators according to
operator precedence. For example, the parser must recognize
a%b+c as (a%b)+c not a%(b+c).The two interpretations are
shown in Figure 14.

To choose the appropriate interpretation, the generated
parser must compare the previous operator’s precedence to the
current operator’s precedence in the (% E | + E)∗ “loop.” In
Figure 14, E is the critical expansion of E. It must match just
id and return immediately, allowing the invoking E to match
the + to form the parse tree in (a) as opposed to (b).

To support such comparisons, productions get precedence
numbers that are the reverse of production numbers. The prece-
dence of the ith production is n− i+ 1 for n original produc-
tions of E. That assigns precedence 3 to E → E%E, prece-
dence 2 to E → E + E, and precedence 1 to E → id.

Next, each nested invocation of E needs information about
the operator precedence from the invoking E. The simplest
mechanism is to pass a precedence parameter, pr, to E and
require: An expansion of E[pr] can match only those subex-
pressions whose precedence meets or exceeds pr.

To enforce this, the left-recursion elimination procedure inserts
predicates into the (% E |+E)∗ loop. Here is the transformed
unambiguous and non-left-recursive rule:

E[pr]→ id ({3 ≥ pr}? %E[4] | {2 ≥ pr}? + E[3])∗

References to E elsewhere in the grammar become E[0]; e.g.,
S → E becomes S → E[0]. Input a%b+c yields the parse tree
for E[0] shown in (a) of Figure 15.

E

E

3

+E

2

%1

E

E

E

3

+2

%1

(a) (a%b)+c (b) a%(b+c)

Figure 14. Parse trees for a%b+c and E → id (% E|+ E)∗

E[0]

E[3]

c

+E[4]

b

%a

E[0]

E[2]

E[2]

c

=b

=a

(a) a%b+c (b) a=b=c
assoc (a%b)+c assoc a=(b=c)

Figure 15. Nonterminal Expansion Trees for nonterminal
E[pr]→ id ({3 ≥ pr}? %E[4] | {2 ≥ pr}? + E[3])∗

Production “{3 ≥ pr}? %E[4]” is viable when the prece-
dence of the modulo operation, 3, meets or exceeds parameter
pr. The first invocation of E has pr = 0 and, since 3 ≥ 0, the
parser expands “% E[4]” in E[0].

When parsing invocation E[4], predicate {2 ≥ pr}? fails
because the precedence of the + operator is too low: 2 6≥ 4.
Consequently, E[4] does not match the + operator, deferring
to the invoking E[0].

A key element of the transformation is the choice of E pa-
rameters, E[4] and E[3] in this grammar. For left-associative
operators like % and +, the right operand gets one more prece-
dence level than the operator itself. This guarantees that the
invocation of E for the right operand matches only operations
of higher precedence.

For right-associative operations, the E operand gets the
same precedence as the current operator. Here is a variation
on the expression grammar that has a right-associative assign-
ment operator instead of the addition operator:

E → E % E |E =right E | id

where notation =right is a shorthand for the actual ANTLR
syntax “|<assoc=right> E =right E.” The interpretation of
a=b=c should be right associative, a=(b=c). To get that as-
sociativity, the transformed rule need differ only in the right
operand, E[2] versus E[3]:

E[pr]→ id ({3 ≥ pr}? %E[4] | {2 ≥ pr}? = E[2])∗

The E[2] expansion can match an assignment, as shown in
(b) of Figure 15, since predicate 2 ≥ 2 is true.

Unary prefix and suffix operators are hardwired as right-
and left-associative, respectively. Consider the following E

18 2014/3/24

E[0]

!!E[4]

E[4]

a

-

-

E

!E

!E

E

E

a

-

-

E[0]

E[3]

!b

%E[4]

a

-

E

E

!E

b

%E

E

a

-

(a) --a!! (b) --a!! (c) -a%b! (d) -a%b!
((-(-a))!)! (-a)%(b!)

Figure 16. Nonterminal call trees and parse trees for produc-
tions E → −E |E ! |E%E | id

with negation prefix and “not” suffix operators.

E → −E |E ! |E%E | id

Prefix operators are not left recursive and so they go into the
first subrule whereas left-recursive suffix operators go into the
predicated loop like binary operators:

E[pr]→ (id | − E[4])
({3 ≥ pr}? ! | {2 ≥ pr}? %E[3])∗

Figure 16 illustrates the rule invocation tree (a record of the call
stacks) and associated parse trees resulting from an ANTLR-
generated parser. Unary operations in contiguous productions
all have the same relative precedence and are, therefore, “eval-
uated” in the order specified. E.g., E → −E | + E | id must
interpret -+a as -(+a) not +(-a).

. Nonconforming left-recursive productions E → E or
E → ε are rewritten without concern for ambiguity using the
typical elimination technique.

Because of the need to resolve ambiguities with predicates
and compute A parameters,

C.1 Left-Recursion Elimination Rules
To eliminate direct left-recursion in nonterminals and resolve
ambiguities, ANTLR looks for the four patterns:

Ai → AαiA (binary and ternary operator)
Ai → Aαi (suffix operator)
Ai → αiA (prefix operator)
Ai → αi (primary or “other”)

The subscript on productions, Ai, captures the production
number in the original grammar when needed. Hidden and
indirect left-recursion results in static left-recursion errors from
ANTLR. The transformation procedure from G to G′ is:

1. Strip away directly left-recursive nonterminal references

2. Collect prefix, primary productions into newly-created A′

3. Collect binary, ternary, and suffix productions into newly-
created A′′

4. Prefix productions in A′′ with precedence-checking seman-
tic predicate {pr(i)>= pr}? where pr(i) = {n− i+ 1}

5. Rewrite A references among binary, ternary, and prefix pro-
ductions as A[nextpr(i, assoc)] where
nextpr(i, assoc) = {assoc == left ? i+ 1 : i}

6. Rewrite any other A references within any production in P
(including A′ and A′′) as A[0]

7. Rewrite the original A rule as A[pr]→ A′A′′∗

In practice, ANTLR uses the EBNF form rather than A′A′′∗.

19 2014/3/24

	Introduction
	Dynamic grammar analysis

	ANTLR 4
	Sample grammar
	Left-recursion removal
	Lexical analysis with ALL(*)

	Introduction to ALL(*) parsing
	Predictions sensitive to the call stack
	Two-stage ALL(*) parsing

	Predicated grammars, ATNs, and DFA
	Predicated grammars
	Resolving ambiguity
	Augmented transition networks
	Lookahead DFA

	ALL(*) parsing algorithm
	Graph-structured call stacks
	ALL(*) parsing functions
	Conflict and ambiguity detection
	Sample DFA construction

	Theoretical results
	Empirical results
	Comparing ALL(*)'s speed to other parsers
	ALL(*) performance across languages
	Effect of lookahead DFA on performance
	Empirical parse-time complexity

	Related work
	Conclusion
	Acknowledgments
	Correctness and complexity analysis
	Pragmatics
	Reducing warm-up time
	Semantic predicate evaluation
	Error reporting and recovery
	Multi-threaded execution

	Left-recursion elimination
	Left-Recursion Elimination Rules

