
Discovery of Visible Semantic Predicates Omitted from
LL(*): The Foundation of the ANTLR Parser Generator

Authors omitted for blind review

1. Introduction
The formal semantics of predicated grammars and analysis
algorithm in the submitted paper require that disambiguat-
ing predicates appear at the left edge of ambiguous produc-
tions. This is cumbersome in practice and forces program-
mers to duplicate predicates. Fortunately, grammar anal-
ysis can automatically discover and hoist predicates from
productions further down the derivation chain into parsing
decisions without predicates. For example, it’s common to
define a Typename production that specifies both semantics
and syntax:

Typename→ {isType(next symbol)}? id

References to Typename behave as if inlined, automatically
making the predicate visible to parsing decisions. If we
restrict analysis to k = 1 for demonstration purposes, the
DFA for rule

Decl→ Typename id | id

is D0
id−→ D1, D1

isType−−−−→ f1, D1
!isType−−−−−→ f2. Edge !isType

is inferred; see function resolveWithPreds in Algorithm 5.
Because our DFA construction algorithm operates on

grammars that can have predicates and actions anywhere
on the right-hand side, hoisting predicates into parsing de-
cisions introduces a semantic hazard. We cannot hoist pred-
icates over actions because they might be a function of that

action. For any derivation sequence (S, uAδ)
~λ⇒∗(S′, uaδ′),

λi ∈ Π is visible if @λj ∈M for j < i and ~λ = λ1 . . . λn.

Definition 1. Semantic predicate transition q
π−→ q′ is vis-

ible from state pA,i if the ATN can transition from pA,i to
q without consuming input and without encountering an ac-
tion transition. The set of predicates visible between states p
and q is:

V isible(p, q) = {λi | (S, p, w, γ)
~λ7→∗(S, q, w, γ′) where

λi ∈ Π for i < j if ∃λj ∈M
λi ∈ Π for i ≤ |~λ| if @λj ∈M}

For example, if p is from position A→ . {π1}?B and q is
from position B → {π2}? . a then V isible(p, q) = {π1, π2}.

At its most complex, the visible semantic context is a
“sum of products.” For example, in grammar
A→ {π1}?B | {π2}? a
B → {π3}? a | {π4}? a

A’s DFA is D0
a−→ D1, D1

(π1∧π3)∨(π1∧π4)−−−−−−−−−−−→ f1, D1
π2−→ f2.

Our DFA construction algorithm relies on the following
definitions to compute semantic context.

Definition 2. Semantic context π in ATN configuration
(q, i, γ, π) is π =

V
V isible(p, q) where p is the ATN state

derived from alternative i’s left edge.

Definition 3. The semantic context for alternative i in
DFA state D is π =

W
(,i, ,πj)∈D

πj

Definition 4. Alternative production i is sufficiently cov-
ered with predicates if we must evaluate a predicate for
every derivation leading to an ambiguous sequence x ∈
C(αi) ∩ C(αj) for i 6= j. V isible(pA,i, q) 6= ∅ for produc-

tion left edge pA,i and every transition q
1:x−−→ q′ such that

(pA,i, xw, γ) 7→∗ (q, xw, γ′).

For example, the first alternative of nonterminal A in the
following grammar is insufficiently covered because it can
match ambiguous sequence b without evaluating a predicate
via the second alternative of B.
A→ B | {π1}? b
B → {π2}? b | b | c

Specifically, we have A⇒ B
π2⇒ b but also A⇒ B ⇒ b.

2. DFA construction algorithm with
predicate hoisting

Here we present the same DFA construction algorithm as in
the submitted paper but with visible predicate hoisting.

As closure passes predicates, it “ands” them into new
configuration c’s semantic context. We do not hoist seman-
tic predicates derived from syntactic predicates in another
nonterminal’s submachine.

Function resolveWithPreds encodes the definitions above.
It first collects configurations by conflicting alternative num-
ber and then “ors” together predicates associated with each
conflicting alternative. If there exists a conflicting alterna-
tive that has fewer predicates than configurations, then at
least one configuration isn’t covered by a predicate (resolve
reports this later). If there are n − 1 predicate contexts for
n alternatives, conjure up the nth context as “not the and”
of the other contexts. If there are fewer than n − 1 predi-
cate contexts, return and indicate we couldn’t resolve D. If
we have n contexts, choose a representative configuration,
c, and set c.π to the combined context “or’d” together for
c’s alternative held in preds array.

Alg. 1: createDFA(ATN State pA) returns DFA

work := []; ∆ := {}; D0 := {};
F := {fi | fi := new DFA state, 1 . . . numAlts(A)};
Q := F ;
DFA.p0 := p0; // save ATN start state in DFA
D0 := closure(D0, A, {(pA,i, i, [],−) | edge i is

p0
ε−→ p},true);

work += D0; Q += D0;
DFA := DFA(−, Q, T ∪Π,∆, D0, F);
foreach D ∈ work do
for each input symbol a ∈ T do
D′ := closure(D,A,move(D, a), false);
if D′ /∈ Q then

resolve(D′);
switch findPredictedAlt(D′) do
case None: work += D′;
case Just j: fj := D′;

endsw
Q += D′;

end

∆ += D
a−→ D′;

end
if wasResolved(D) then
foreach c ∈ D such that wasResolved(c) do

∆ += D
c.π−−→ fc.i;

end
end
work -= D;

end
return DFA;

Algorithm 2: move(DFA State D, a ∈ T)
returns set of configurations

return {(q, i, γ, π) | (p, i, γ, π) ∈ D, p
a−→ q};

Alg. 3: resolve(DFA State D)

conflicts := the conflict set of D;
if |conflicts| = 0 and not overflowed(D) then return;
resolved := resolveWithPreds(D, conflicts);
if resolved and insufficientlyCovered(i) then

report i insufficiently covered with predicates;
if not resolved then

resolve by removing all c ∈ D such that
c.i ∈ conflicts and c.i 6= min(conflicts);

end
if overflowed(D) then report recursion overflow;
else report grammar ambiguity;

Alg. 4: closure(DFA State D, c = (p, i, γ, π),
boolean collectπ) returns set closure

if c ∈ D.busy then return {}; else D.busy += c;
closure := {c};
if p = p′A (i.e., p is stop state) then
if γ = p′γ′ then
closure += closure(D, (p′, i, γ′, π), collectπ);

else
closure +=

S
∀ p2 : p1

A−→p2∈∆M

closure(D, (p2, i, [], π), collectπ);

end
foreach transition t emanating from ATN state p do
switch t do

case p
πA′−−→ q transition and A′ is synpred:

// make sure pred is not syn pred in another rule
if collectπ and (S, DFA.p0, w, γ) 7→∗ (S, p, w, γ) then
π′ := π ∧ πA′ ;
else π′ := π;
add closure(D, (q, i, γ, π′), collectπ) to closure;

case p
πp−−→ q transition:

if collectπ then π′ := π ∧ πp;
else π′ := π;
add closure(D, (q, i, γ, π′), collectπ) to closure;

case p
A−→ p′ transitions to nonterminal A:

depth := number of occurrences of A in γ;
if depth = 1 then

add i to D.recursiveAlts;
if |D.recursiveAlts| > 1 then
throw LikelyNonLLRegularException;

end
if depth ≥ m, the max recursion depth then

mark D to have recursion overflow;
return closure;
closure += closure(D,A, (pA, i, p

′γ, π), collectπ);

case p
µ−→ q, p

ε−→ q:
closure += closure(D,A, (q, i, γ, π), collectπ);

endsw
end
return closure;

Alg. 5: resolveWithPreds(DFA State D, set conflicts)
returns boolean

preds := []; // preds[i] is predicate for alt i
configs := []; // configurations for alt i
foreach i ∈ conflicts do

configs[i] := {c ∈ D | c.i = i};
preds[i] :=

W
c.π

c∈configs[i]
;

if 0 < |preds[i]| < |configs[i]| then
mark alt i as insufficiently covered;

end
if |preds| < |conflicts| − 1 then return false;
if |preds| = |conflicts| − 1 then

let j be the alt with missing predicate;
preds[j] = ¬(

V
i 6=j
preds[i]); // not the others

end
foreach i ∈ conflicts do

remove all but one representative c = (, i, , π) ∈ D;
c.π := preds[i]; // reset to combined preds
mark c as wasResolved;

end
mark D as wasResolved;
return true;

