Theoretical Results Omitted from
“LL(*): The Foundation of the ANTLR Parser Generator”

Authors omitted for blind review

November 19, 2010

1 Theoretical Results

Theorem 1 FEvery PEG without syntactic predicates
has an equivalent ANTLR grammar.
Proof. After converting meta-language syntax, it is
sufficient to restrict lookahead to k =1 in every deci-
sion and prefix every alternative in the ANTLR gram-
mar, o;, with syntactic predicate (a;)=>. For every
decision, there are two cases to consider. Case (i):
The decision is LL(1), which means each input sym-
bolb € 1: LA; predicts a single alternative i. A PEG
tries the alternatives in order until it reaches alter-
native i. ANTLR’s lookahead DFA has edge Dg LA fi
and immediately jumps to the same alternative with-
out speculating.

Case (ii): The decision is non-LL(1). A PEG will
pick the first alternative that matches at the current
input position. ANTLR’s grammar analysis creates

a DFA with an edge for every b € 1: LA;, Dg LR Db-
Py 1S accept state f; when b uniquely predicts alterna-
tive i. When b predicts multiple alternatives, ANTLR

adds DFA edges py Synpred(es), fi for all alternatives
1 nondeterministic upon b in the order specified in the
grammar. The DFA tests the predicated edges in that
same order. The DFA effectively restricts backtrack-
ing to only those alternatives that begin with b. Order
is preserved and so the ANTLR grammar matches the
same alternative as the PEG, albeit without testing
alternatives not starting with b. TODO: add sem
preds?

For example, the following ANTLR grammar has
the same hazard as the equivalent PEG, A «— a/ab.

a options {k=1;}
(A)=> A
| (A B)=>AB

>

Input token A predicts both alternatives and so
ANTLR will try them in order, erroneously matching
the first alternative upon input A B.

Theorem 2 FEvery PEG with positive and negative
syntactic predicates can be transformed to an equiva-
lent to ANTLR grammar.

Proof. By construction. First we convert the
PEG to an ANTLR grammar per the previous
proof. Then, we erase the syntactic predicates
to ANTLR semantic predicates. PEG syntactic
predicate &E becomes ANTLR semantic predicate
{synpred("predE")}? and we introduce a rule for
the CFG fragment E, predE : E ;. Similarly, we
translate PEG “not predicate” 'E to semantic predi-
cate {'synpred("predE") }?. Function synpred in-
vokes the specified rule and returns true if the rule
matches from the current input pointer and returns
false otherwise. The state of the parser is preserved
after the call.

For example, Ford [1] provides the following PEG

for non-context-free language a"b"c":

A—aAb/e
B —bBc/e
D — &(Ab)a*B 1.



Mechanically following the predicate erasure rules,
we get the following ANTLR grammar (where non-
terminals start with lowercase letters, tokens with up-
percase):

options { k=1; backtrack=true; }

a:AaB| ;

b:BbcC| ;

d : {synpred("pred1")}? A*x b EOF ;

predl : a {!synpred("pred2")}? ; // a then not B
pred2 : B ;

The availability of unrestricted semantic predicates
in ANTLR supports context-sensitive parsing in a
practical but ad hoc manner.

LL(*) speculates less often than packrat parsing
unless every alternative starts with the same input
symbol. Without the & = 1 restriction, LL(*) has
the potential to speculate even less. Theory agrees
with practice as we show in the next section.

References

[1] ForDp, B. Parsing expression grammars:
a recognition-based syntactic foundation. In
POPL’04 (2004), ACM Press, pp. 111-122.



