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Abstract

Programmers tend to avoid using language tools, resorting to ad-hoc methods, because
tools can be hard to use, their parsing strategies can be difficult to understand and debug, and
their generated parsers can be opaque black-boxes. In particular, there are two very common
difficulties encountered by grammar developers: Understanding why a grammar fragment results
in a parser nondeterminism and determining why a generated parser incorrectly interprets an
input sentence.

This paper describes ANTLRWorks, a complete development environment for ANTLR gram-
mars that attempts to resolve these difficulties and, in general, make grammar development more
accessible to the average programmer. The main components are a grammar editor with refac-
toring and navigation features, a grammar interpreter, and a domain-specific grammar debugger.
ANTLRWorks’ primary contributions are a parser nondeterminism visualizer based upon syntax
diagrams and a time-traveling debugger that pays special attention to parser decision-making
by visualizing lookahead usage and speculative parsing during backtracking.

1 INTRODUCTION

Generative programming and other forms of software automation are becoming more prevalent as
applications become larger and more complicated. From scientific computing to web development,
programmers are building domain-specific languages, configuration file formats, network protocols
and numerous data file formats as well as the traditional programming language compilers and
interpreters. Unfortunately, as Klint, Lämmel, and Verhoef point out [1], many of these language-
related applications are written entirely by hand without the use of automated language tools such
as parser generators, tree walker generators, and other code generators.

Programmers tend to avoid using language tools, resorting to ad-hoc methods, partly because of
the raw and low-level interface to these tools. The threat of having to contort grammars to resolve
parser nondeterminisms is enough to induce many programmers to build recursive-descent parsers by
hand; some readers are familiar with LALR reduce-reduce warnings from YACC [2] or LL warnings
from other parser generators. Programmers commonly resort to hand-built parsers despite the fact
that grammars offer a more natural, high-fidelity, robust and maintainable means of encoding a
language-related problem.
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The ANTLR parser generator [3] attempts to make grammars more accessible to the average
programmer by accepting a larger class of grammars than LL(k) and generating recursive-descent
parsers that are very similar to what a programmer would build by hand. Still, developing grammars
is a nontrivial task. Just as developers use IDEs (integrated development environments) to dramat-
ically improve their productivity, programmers need a sophisticated development environment for
building, understanding, and debugging grammars. Unfortunately, most grammar development is
done today with a simple text editor.

This paper introduces ANTLRWorks, a domain-specific development environment for ANTLR
version 3 grammars that we built in order to:

• Address the most common questions and problems encountered by developers, derived from
years of personal experience observing the ANTLR mailing list. E.g., “Why does my grammar
yield a nondeterministic parser?” and “Why doesn’t my parser recognize input correctly?”.

• Make grammars more accessible to the average programmer.

• Speed up development for both experts and beginners.

• Improve maintainability and readability of grammars by providing grammar navigation and
refactoring tools.

To achieve these goals, ANTLRWorks provides three main components: a grammar-aware editor, a
grammar interpreter, and a grammar debugger.

The main window has two ever-present panes: the rule navigation list on the left and the actual
editing pane on the right. Below these panes is usually a syntax diagram view of the current rule. The
editor pane shows the grammar with syntax highlighting and supports identifier auto-completion,
rule and semantic action folding, rule dependence diagrams, simple text search, “find rule usage...”
search, and grammar refactoring operations.

To help resolve parser nondeterminisms, ANTLRWorks highlights nondeterministic paths in the
syntax diagram and provides sample input for which the parser cannot uniquely predict a path.
ANTLRWorks can also visualize the parser decision-making process (implemented with lookahead
state machines) to help figure out which input sequences predict which alternative productions.
ANTLRWorks is guaranteed to provide the same parsing information as ANTLR because it uses
ANTLR as a library to obtain lookahead and nondeterminism information.

The ANTLR tool library has a built-in interpreter that ANTLRWorks invokes directly to compute
and display the parse tree associated with a particular input sequence and start rule—all without
requiring a complete grammar and without having to generate code, compile, and run the application
incorporating the parser. The experience is similar to programming in an interpreted language such
as Python where individual methods can be interactively executed to get immediate feedback about
their correctness. Developers tend to test methods, rather than waste time mentally checking the
functionality of a method, because it is so quick and easy. Similarly, being able to dynamically test
rules as they are written can dramatically reduce development time.

Once a grammar is more-or-less complete and the generated parser has been integrated into
a larger application, the grammar interpreter is less useful primarily because it cannot execute
embedded semantic actions. ANTLRWorks has a domain-specific debugger that attaches to language
applications running natively via a network socket using a custom text-based protocol. Parsers
generated by ANTLR with the -debug command-line option trigger debugging events that are passed
over the socket to ANTLRWorks, which then visually represents the data structures and state of the
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parser. Because ANTLRWorks merely sees a stream of events, it can rewind and replay the parse
multiple times by re-executing the events without having to restart the actual parser. This domain-
specific time-travel debugging mechanism is similar to the more general framework of Bhansali et
al [4]. The primary advantage of the socket connection, however, is that the debugger can debug
parsers generated in any programming language that has a socket library. Because ANTLR can
generate parsers in many different target languages, we needed a mechanism capable of supporting
more than just Java (ANTLR’s implementation language).

The debugger dynamically displays a parser’s input stream, parse tree, generated abstract syntax
tree (AST), rule invocation stack, and event stream as the user traces through the parser execution.
The grammar, input, and tree display panes are always kept in sync so that clicking on, for example,
an AST node shows the grammar element that created it and the token within the input stream from
which it was created. ANTLRWorks has breakpoints and single-step facilities that allow programmers
to stop the parser when it reaches a grammar location of interest or even an input phrase of interest.
Sometimes it is useful to jump to a particular event (such as a syntax error) within the parse and then
back up to examine the state of the parser before that event. To accommodate this, ANTLRWorks
has a “step backwards” facility.

Complex language problems are often broken down into multiple phases with the first phase pars-
ing the input and building an intermediate-form AST. This AST is then passed between multiple
tree walkers to glean information or modify the AST. ANTLR accepts tree grammars and can auto-
matically generate tree walkers, again in the form of a recursive-descent parser. The ANTLRworks
debugger graphically illustrates the node-by-node construction of ASTs as the parser being debugged
constructs these nodes. ASTs grow and shrink as the developer steps forward and backwards in the
parse. ANTLR treats tree grammars just like parser grammars except that the input is a tree instead
of a flat token sequence. In the ANTLRWorks debugger, programmers can set breakpoints in the
input tree and single step through tree grammars to detect errors just like when debugging a token
stream parser.

The next (second) section provides an overview of ANTLR syntax and LL(∗) parsing concepts
required to understand the operation and appreciate the utility of ANTLRWorks. The third section
describes the grammar interpreter feature, which is useful for rapid prototyping. The fourth section
describes ANTLRWorks’ debugger including information on its socket protocol, single stepping and
breakpoints, dynamic AST display, and tree parser debugging. The fifth section describes some of
the miscellaneous features found in ANTLRWorks. Finally, we discuss related work and then a few of
the planned features. This paper is illustrated throughout with screen snapshots from ANTLRWorks.

2 SYNTAX DIAGRAM AND LOOKAHEAD DFA

VISUALIZATION

ANTLR is a recursive-descent parser generator that accepts a large class of grammars called LL(∗)
that can be augmented with semantic and syntactic predicates [5] to resolve parsing nondeterminisms
and grammar ambiguities for such complex languages as C++. ANTLRWorks supports the de-
velopment of grammars by visualizing data structures and processes associated with ANTLR and
ANTLR-generated recognizers. This section describes ANTLR’s predicated-LL(∗) parsing algorithm
in sufficient detail to follow the ANTLRWorks discussion and associated visualizations in the remain-
der of the paper.
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2.1 LL(∗) and Lookahead DFA

ANTLR’s core parsing strategy is called LL(∗) and is a natural extension to LL(k). LL(k) parsers
make parsing decisions (i.e., distinguishing between alternative productions) using at most k symbols
of lookahead. In contrast, LL(∗) parsers can scan arbitrarily far ahead. Because LL(k) lookahead
is bounded, the lookahead language is regular and can be encoded within an acyclic deterministic
finite automaton (DFA) [6]. LL(∗) simply allows cycles in the lookahead DFA. Lookahead decisions
for LL(∗) are no different than LL(k) decisions in that, once an alternative is predicted, LL parsing
of that alternative proceeds normally.

LL(∗) represents a much larger class of grammars than LL(k) because parsing decisions can see
past arbitrarily-long common left-prefixes. For example, consider the following non-LL(k) grammar
expressed in ANTLR EBNF notation.

grammar T;
def : modifier+ ’int’ ID ’=’ INT ’;’ // E.g., "public int x=3;"

| modifier+ ’int’ ID ’;’ // E.g., "public static int x;"
;

modifier
: ’public’
| ’static’
;

Rule names (nonterminals) begin with a lowercase letter and token names (terminals) begin with an
uppercase letter. The two alternatives of rule def both begin with the same arbitrarily-long prefix:
modifier+ (one-or-more modifiers). Unfortunately, no amount of fixed lookahead can see past this
unbounded left-prefix to the distinguishing symbol beyond, “=” or “;”, in order to predict which
alternative will succeed. So, rule def is not LL(k) and thus would have to be left-factored to produce
an LL(k)-conformant grammar (in this case LL(1)):

def : modifier+ ’int’ ID (’=’ INT)? ’;’ ;

But, this makes the grammar harder to read and left-factoring is not always possible in the presence
of programmer-supplied grammar actions. Either grammar is no problem for LR(k) parsers such as
those generated by YACC, but there are similar examples that trip up LR(k) parsers (see the final
example in this section).

A better solution is to recognize that, while this lookahead language is infinite, it is still regular
and so there must be a (cyclic) DFA that recognizes sentences in that lookahead language. ANTLR
automatically creates these lookahead DFA and makes them available to ANTLRWorks. Figure 1 is
an ANTLRWorks screen shot showing a portion of the grammar as well as the lookahead DFA for
the parsing decision in rule def. Being able to examine the lookahead DFA for a particular decision
is very helpful when debugging grammars. Often it is not clear why a rule parses a certain input
sequence improperly. Tracing that input sequence through the lookahead DFA reveals where it splits
off down the wrong path, ultimately predicting the wrong alternative (currently ANTLRWorks does
not visually step through the lookahead DFA).

The lookahead DFA in Figure 1 predicts alternative one (state s5) or two (state s4) depending
on which symbol follows the ID (identifier). Notice that the DFA does not encode the entire first
production of rule def because the LL(∗) DFA construction algorithm terminates for a particu-
lar decision when the DFA uniquely predicts all alternatives (or when the decision is found to be
nondeterministic). For prediction, the DFA can stop examining input at the “=” or “;” symbol.
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Figure 1: ANTLRWorks Window Showing Lookahead DFA Predictor for Rule def

ANTLR’s use of a lookahead DFA at a decision point avoids the need for the full parser to
backtrack. Running this DFA is much more efficient than running the general recursive-descent
parsing process for each alternative for several reasons. First, the DFA lookahead process stops as
soon as it reaches a point at which it can decide between the alternatives, and therefore it usually
only looks at the first few tokens, even in a large recursive grammar rule. Second, the DFA lookahead
process does not execute grammar actions, so there is no danger of executing them more than once
or having to undo them.

LL(∗) does not approximate the distinguishing lookahead language nor the entire context-free
grammar. A grammar is only LL(∗) when the lookahead needed to distinguish alternative produc-
tions is regular for each decision. This does not mean that the language generated by the grammar
itself must be regular, however. The language generated by the following LL(1) rule is not regular,
but the lookahead language used to distinguish productions is regular (’(’ or INT):

e : ’(’ e ’)’ // ’(’ predicts this alternative
| INT // INT predicts this alternative
;

Not all lookahead languages are regular. When the lookahead computation encounters recursion
reachable by more than one alternative, for example, the analysis algorithm fails rather than ap-
proximating the lookahead. In this case, ANTLR can still generate a parser that uses backtracking
to distinguish the alternatives at run-time. In practice, this means that ANTLR can accept any
non-left-recursive grammar without complaint (see the following two sections on predicated-LL(∗)).

ANTLR’s DFA construction algorithm proceeds in stages beginning with nondeterministic finite
automata (NFA) [6] construction. The meta-language parser converts each grammar into a set of
interconnected NFA, one per rule. Token references in the grammar become labeled NFA transitions.
Rule references become ε-transitions to the start state of the NFA representing the target rule.
Emanating from the final state of every rule’s NFA are (“FOLLOW”) transitions pointing back to
states that have ε-transitions to that rule. The start state of each rule has ε-transitions to the start
state of every alternative production in that rule. ANTLRWorks can visualize the NFA as an option,
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but the syntax diagram view of the NFA is easier to read as shown in figure 2. In the early ANTLR
LL(k) lookahead analysis algorithms [7], these NFA were called grammar lookahead automata.

ANTLR’s next task is to construct the set of DFA needed by the generated parser, one DFA
for each fork in the NFA. A fork represents a parsing decision where each branch corresponds to
a production in the grammar. ANTLR must create a DFA that uniquely predicts productions by
differentiating accept states with the predicted production number (e.g., states s4 and s5 Figure 1).
In addition, the DFA must represent the exact lookahead language rather than an approximation in
order to maximize parser strength. The lookahead language is generally a subset of the language
generated by the grammar rule and is the minimal set of input sequences that distinguishes between
alternative productions.

ANTLR expresses the DFA construction problem as a variant of the classical NFA to DFA subset
construction algorithm that uses reach and closure operations [6]. The classical algorithm uses a
simple set of NFA states to represent a DFA state. This set of states encodes the set of possible
NFA configurations that the NFA could be in after accepting a particular input sequence. An NFA
configuration is just a state number in the classical algorithm, but ANTLR’s NFA configurations are
tuples: (NFA state, production, context). ANTLR uses the predicted production to split DFA accept
states and uses grammatical context to differentiate NFA configurations within a DFA state. The
grammatical context is purely a rule invocation stack in its most basic form. NFA closure operations
push NFA states as they transition to rule start states. Closure operations that reach a rule’s stop
NFA state “return” to the state that invoked that rule rather than following all emanating transitions.
With this context information, ANTLR pursues only those NFA paths corresponding to valid rule
invocation sequences in a grammar; i.e., ANTLR examines the exact lookahead language rather than
an approximation. ANTLR needs a stack per NFA state not because the NFA has no stack, but
because the DFA conversion algorithm pursues all possible lookahead sequences in parallel.

The closure operation and the entire algorithm terminate due to a finite amount of work like the
original subset construction algorithm. Because recursion could force closure operations to build in-
finitely large context stacks, the closure operation caps context stack size. Decisions where recursion
would force infinitely large stacks during closure are not LL(∗) anyway, so ANTLR can immediately
report an LL(∗) nondeterminism in such situations (recursion in more than one alternative produc-
tion). With finite stacks, there are a finite number of NFA configurations per DFA state and, hence,
a finite number of unique DFA states (sets of NFA configurations). A finite number of DFA states
leads to a finite amount of work.

ANTLR’s LL(∗) algorithm is the dual of Bermudez’s LAR(m) [8], which uses cyclic lookahead
DFA to resolve nondeterministic LR(0) states. The only substantive difference is that Bermudez
bounds the LAR(m) algorithm’s context stack depth at analysis time, m, whereas ANTLR limits
only the recursion depth rather than absolute stack size.

In the natural language realm, Nederhof [9] first converts grammars to recursive transition net-
works [10] (RTNs) and then to NFA identical to ANTLR’s. Nederhof seeks to reduce the complexity
of matching natural languages by collapsing a complete context-free grammar to a single DFA.
ANTLR, on the other hand, generates a recursive descent parser to match the entire context-free
language but needs a set of DFA predictors, one for each grammar decision point.

There is no strict ordering between LL(∗) and LR(k) because there is at least one grammar that
is LL(∗) but not LR(k). For example, the following LL(∗) grammar segregates the set of declaration
modifiers into two different rules in an effort to be more strict syntactically.
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Figure 2: Partial ANTLRWorks Window Showing the Syntax Diagram for Rule def

// simplified Java declaration rule
decl : variable_modifier+ variable // E.g., "public int i;"

| function_modifier+ function // E.g., "public int f() {...}"
;

Because the two modifier rules have input symbols in common, such as public, the grammar is not
LR(k). The parser has a reduce-reduce conflict between rule variable modifier and function modifier

upon seeing any modifier in common. No matter how large k is, the parser will not be able to resolve
the conflict by seeing past the arbitrarily-long modifier sequence to the distinguishing symbol beyond
(“;” or “(”). This grammar is, however, LL(∗) because the cyclic DFA can see past the modifiers.
On the other hand, many left-recursive grammars are LR(1) but not LL(∗).

As with all parsing strategies, pure CFGs cannot describe context-sensitive language phrases.
Typically these lead to grammar ambiguities, which leads to parser nondeterminisms. Generalized
LR (GLR) systems, such as ASF+SDF’s Meta-Envionrment [11], deal with this by pursuing all
ambiguous paths and then using a semantic action later to pick the correct parse tree from the forest.
ANTLR moves that semantic check earlier, into the production prediction phase, by predicating
alternatives with boolean expressions.

2.2 Semantic Predicates

Most programming languages are context-sensitive even though we describe them with context-free
grammars for parsing efficiency reasons. Context-sensitive constructs are resolved with semantic
actions during or after parsing to verify semantic validity. For example, “x=y;” only makes sense
in the context of a visible variable declaration for y (and x in languages that require variables to be
declared before use). In this case, context affects the validity, but not the meaning of the phrase.
Syntax alone is sufficient to determine that the phrase is an assignment statement.

Inescapable context-sensitivity occurs when the proper interpretation of a phrase relies on in-
formation about the surrounding context. Because there is no way to specify context in a pure
context-free grammar, context-sensitivity results in ambiguous grammars. Ambiguous grammars
can generate the same phrase in more than one way because the alternative productions cannot be
predicated upon context. An ambiguous context-free grammar then has no deterministic parser (a
parser that chooses exactly one phrase interpretation), rendering deterministic parsing tools based
on pure context-free grammars ineffective in this case.

ANTLR augments context-free grammars with semantic predicates that can specify the semantic
validity of applying a production, thus, providing a context-sensitive parsing mechanism. ANTLR
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Figure 3: ANTLRWorks Visualizing Rule primary’s Nondeterminism

is applicable to languages such as C++ that present a number of challenging parsing problems. One
of the most difficult issues involves a syntactic ambiguity that must be resolved with symbol table
information. Consider phrase C++ expression “T(34)”. This phrase can be either a constructor
style typecast or a method call depending on whether T is a type name or a method name. A C++
grammar rule would have two alternative productions that could match “T(34)” as illustrated by
the following extremely simplified grammar fragment.

primary
: ID ’(’ INT ’)’ // ctor-style typecast; E.g., float(3)
| ID ’(’ INT (’,’ INT)* ’)’ // method call; E.g., f(3, 4)
;

Communicating the cause of parser nondeterminisms to the programmer in a simple and helpful
manner is one of the most important problems in parser generator design. Using the command-line
interface, ANTLR identifies and reports the issue during grammar analysis:

Decision can match input such as "ID ’(’ INT ’)’" using alternatives: 1, 2
As a result, alternative(s) 2 were disabled for that input

This message provides a sample input sequence for which the generated parser couldn’t choose
an alternative and also indicates how ANTLR resolves the nondeterminism. ANTLR resolves all
nondeterminism issues statically by generating a DFA predictor that will choose the alternative
production specified first in the grammar (unless it can find a predicate; see below).

ANTLRWorks obtains the same nondeterminism information from ANTLR but takes a visual
approach, highlighting the various nondeterministic paths in the syntax diagram. If the nondeter-
minism traverses multiple rules, ANTLRWorks computes and presents the syntax diagrams for only
those rules. Figure 3 illustrates the nondeterminism for rule primary. ANTLR statically resolves the
nondeterminism by predicting the first alternative, identified by the thick line (the path taken by the
parser is shown in green when running the tool). The other path viable upon “ID ’(’ INT ’)” is
unreachable for that input and is identified here by the dashed thick line (ANTLRWorks shows this
in red). ANTLRWorks can also single step through the syntax diagram along any nondeterminism
path. This ability clearly identifies which areas of the grammar contribute to the nondeterminism.

Given only context-free grammar rules, the generated parser must pick a single path at any
nondeterministic decision point. In this case, the parser will always interpret “T(34)” as a constructor
style typecast, which is not always correct. The parser needs semantic information to distinguish
between the alternatives. If T is a type name, the parser should choose the first alternative else
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Figure 4: Lookahead DFA for Rule primary Illustrating Semantic Predicate Evaluation

it should choose the second. That is straightforward to express using a semantic predicate that
examines the first symbol of lookahead:

primary
: {isType(input.LT(1))}? ID ’(’ INT ’)’
| ID ’(’ INT (’,’ INT)* ’)’
;

Semantic predicates are unrestricted boolean expressions enclosed in curly braces followed by a
question mark that, in a sense, gate productions in and out dynamically. At run-time, the parser will
try the nondeterministic alternatives in the order specified, choosing the first alternative production
whose semantic predicate evaluates to true. Productions without semantic predicates implicitly have
{true}? predicates. Here, expression “isType(input.LT(1))” returns true if the first lookahead
token is a type as determined by the symbol table. Presumably other actions within the grammar
update the symbol table and isType() is some user-defined method.

ANTLR incorporates semantic predicates into the prediction DFA as if they were input symbols
as shown in Figure 4. Upon input sequence “T(34)”, the lookahead DFA relies on run-time infor-
mation (the predicate) to resolve the syntactic ambiguity. At s4, the DFA runs finishes testing the
lookahead language input symbols and begins testing the semantic predicate transitions, but only
when necessary. Upon input sequences such as “f(3, 4)”, the DFA predicts the second alternative
(method call) without having to evaluate the semantic predicate; the state sequence is s0, s1, s2, s3,
s5. The transition from s4 to s5 with predicate label true is evaluated if the predicate on transition
s4 to s6 fails. The notation s6=>1 implies that state s6 predicts alternative one.

Because semantic predicates are unrestricted expressions in the target language, they can look
at symbols far ahead of the current position (i.e., input.LT(i)) and can even speculatively parse
alternatives in full using a backtracking mechanism. Such semantic predicates manually specify a
lookahead language recognizer, but the syntactic predicate mechanism described in the next section
offers a more formal approach.

2.3 Syntactic Predicates and Backtracking

One weakness of the LL(∗) approach is that a DFA does not have a stack and consequently cannot
see past nested language structures; that is, LL(∗) cannot see past recursive rule invocations to what
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lies beyond. To overcome this limitation, ANTLR supports syntactic predicates that predicate alter-
native productions with a context-free lookahead language rather than the weaker regular lookahead
language used by LL(∗). Syntactic predicates not only increase the strength of LL(∗) by providing a
controlled backtracking mechanism, but they also provide a means of resolving grammar ambiguities.

To illustrate the convenience of syntactic predicates, consider building a grammar for C++.
Ellis and Stroustrup [12] point out that some statements cannot be distinguished from declarations
without backtracking or some other form of arbitrary lookahead. For example, given type T, the
following statement looks like a declaration until the ++ symbol is encountered:

T(*a)++; // expression statement; cast *a to T then increment

Worse, some C++ phrases can be both expressions and declarations. For example, “T(x)” is
syntactically both a declaration (x is an integer as in “T x;”) and an expression (cast x to type T as
in “(T)x;”). The most obvious grammar for the C++ statement rule begins as follows:

stat: declaration
| expression ’;’

...
;

There are two problems with this specification. First, distinguishing between declarations and ex-
pression statements requires backtracking; rule stat is not LL(∗) nor is it LR(k). ANTLR would
report a nondeterminism between those two alternatives during grammar analysis. Second, the rule
is ambiguous because at least one input phrase can be matched by both alternatives. Even if back-
tracking were not required to distinguish between the alternatives, the grammar ambiguity would
result in a parser nondeterminism. The C++ reference guide resolves the ambiguity by giving prece-
dence to declaration over expression when a phrase is consistent with both. But, how can such
precedence be encoded in a grammar?

Backtracking conveniently solves both problems by adding more recognition power and implicitly
ordering the alternatives within a decision. The following version of rule stat overcomes the weakness
of LL(∗) by simply trying out the alternatives and correctly expresses the precedence by choosing
the first alternative that matches.

stat: (declaration)=> declaration // if looks like declaration, it is
| expression ’;’ // else its expression

...
;

The (declaration)=> notation indicates that the lookahead language for the first alternative is
the language generated by the entire declaration rule. If the lookahead is not consistent with a
declaration, the parser attempts expression, the next viable alternative.

Readers familiar with GLR will notice that the original rule without the syntactic predicates
is GLR because it is a CFG. GLR would deal with the nondeterminism associated with arbitrary
lookahead by pursuing all viable paths with multiple parse stacks in a manner similar to backtracking.
GLR resolves the second problem related to ambiguity by simply returning both possible parse
trees. A later semantic phase, or parser callbacks on the fly as Elkhound [13] does, needs to choose
declaration trees over expression trees when both are available at the same input position. GLR
is similar to LAR(m) in that both engage a form of arbitrary lookahead when confronted with
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nondeterminisms. LAR(m) engages a DFA to examine the regular lookahead language whereas
GLR engages multiple, full parsers to explore viable paths.

Ford [14] formalized the notion of ordered productions and syntactic predicates in LL-based
grammars by defining parser expression grammars (PEGs). Whereas a generative CFG formally
expresses a language in terms of rules to generate phrases of the language, a PEG in contrast
expresses a language in terms of the way a backtracking recursive-descent parser would recognize
phrases of the language. Like CFGs, there are multiple alternative methods to parse PEGs, one being
simply to transform them directly into backtracking recursive-descent parsers. Ford also introduced
packrat parsing [15] that reduces the worst-case exponential time complexity of backtracking to
linear complexity by memoizing partial parsing results at the cost of a potentially large heap; space
is O(nm) for n input symbols and m rules. Rats! [16] is an example parser generator implementing
linear time PEG parsing in the Java arena that does heavy optimization to reduce heap usage. A
TXL [17] specification is similar to a PEG in that TXL backtracks across the alternatives in order
(but does not support predicates).

Because PEG parsers generally decide among alternatives through backtracking, programmer-
supplied actions must usually be stateless, or else the programmer must somehow manually “undo”
any state changes an action makes when the parser backtracks. Without the ability to change state
such as updating a symbol table, altering the parse based upon run-time information via semantic
predicates is not feasible. The constant in front of the parse-time space complexity can also be much
larger than for more traditional top-down parsers that use lookahead to predict alternatives.

ANTLR provides the power of a PEG with the semantic action flexibility and low overhead
of a traditional LL-based parser. ANTLR not only supports manual backtracking via syntactic
predicates, but supports an automatic backtracking option that tells ANTLR to backtrack at run-
time if LL(∗) static analysis fails. Consider the following modified version of stat.

grammar Cpp;
options {backtrack=true;}
...
stat

: declaration {unrestricted action in target language}
| expression ’;’ {another unrestricted action in target language}
| ’while’ ’(’ expression ’)’ stat

...
;

Because of the backtrack=true option, rule stat automatically detects the LL(∗) nondeterminism
between the first two alternatives and backtracks when the lookahead is consistent with a declara-
tion or expression. If, on the other hand, the first symbol of lookahead is while, then the parser
immediately jumps to the third alternative without backtracking just like an LL(1) parser. ANTLR
implements syntactic predicates via semantic predicates whose expressions reference backtracking
routines. Since semantic predicates are only evaluated when LL(∗) lookahead is insufficient, ANTLR
parsers automatically only backtrack when LL(∗) is insufficient.

Action execution is also straightforward in ANTLR grammars. If the parser is not backtracking,
it simply executes the actions. During backtracking, however, ANTLR skips actions because they
cannot be undone in general; each action is surrounded by an “if not backtracking” conditional.
Once a production succeeds, the parser rewinds the input and matches that alternative a second
time, this time “with feeling” to execute any actions within that production.
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ANTLR’s predicated-LL(∗) strategy is equivalent in power to PEG1 and can be viewed as an
optimization to PEG. LL(∗) is strong enough to prevent backtracking in most decisions for common
languages. If ANTLR accepts an unpredicated grammar without reporting a nondeterminism, the
generated parser runs in a purely predictive fashion. The benefit of using manually-specified syntactic
predicates is that, if performance issues arise, the developer knows where to begin optimizing. The
auto-backtracking mode is easier to use but masks which decisions are expensive. The efficiency of
ANTLR’s mechanism over pure packrat parsing is analogous to GLR’s efficiency over Earley’s [18]
algorithm. GLR relies on traditional LR parsing for all but the nondeterministic states. In principle,
GLR could be made even more efficient by using Bermudez’s LAR(m) rather than LR in order to
reduce the number of nondeterministic states.

For completeness, it is worth pointing out the relative syntactic expressiveness of the various
parsing strategies discussed in this paper. PEGs are far stronger than LL(k), because of backtracking,
and can express all LR(k) languages [14] (though not every LR(k) grammar; e.g., a left-recursive
grammar). Pure LL(∗) without predicates sits somewhere between LL(k) and PEG; LL(∗) uses
arbitrary regular lookahead versus the arbitrary context-free lookahead of PEG. Similarly, GLR is
strictly stronger than both LAR(m) and unpredicated LL(∗) because GLR can handle any context-
free language. As mentioned previously, there is no strict ordering between LR(k) and LL(∗). While
GLR handles all context-free languages, it is not yet known whether a PEG exists for every context-
free language. Ford [14] does, however, provide a PEG for the context-sensitive language {anbncn},
suggesting that either there is no strict ordering between the two grammar classes or possibly that
PEG is larger than GLR. In practice, PEG, ANTLR’s predicated-LL(∗), and GLR are sufficiently
expressive.

The previous sections described ANTLR’s lookahead mechanism and how ANTLRWorks visu-
alizes lookahead DFA, grammar rules (using syntax diagrams), and nondeterminisms. The next
sections focus on how ANTLRWorks helps developers to debug grammars by visualizing the LL(∗)
parsing process.

3 RAPID PROTOTYPING WITH GRAMMAR

INTERPRETER

In order to develop a correct grammar quickly, the developer needs the ability to test rules as they
are written. As the grammar grows, the developer adds rules to an existing base of tested rules,
making it easier to track down parse errors (the errors are most likely in any newly added rules).
The developer needs more than just a yes or no answer as to whether or not the input sequences
match—they need parse trees, which describe exactly how the grammar matched the input sequences.
Ideally, this testing would be done without code generation and target-language compilation in order
to provide instantaneous feedback.

ANTLRWorks supports rapid grammar development by using ANTLR’s built-in interpreter, thus,
providing immediate feedback during development (Meta-Environment [11] [19], TextTransformer
[20], and LAUNCHPADS [21] also have interpreters). Figure 5 shows the parse tree associated with
matching input “public static int x=3;” starting at rule def in the grammar from the LL(∗)
section. Lexical rules were added to define the tokens used by the parser rules; ANTLR supports
combined lexer and parser specifications. The developer can manually specify which tokens should

1For the most part, ANTLR grammars are only syntactically different from PEGs with the exception of the “not
predicate” that ANTLR must simulate with a semantic predicate. The not predicates are primarily used in lexers.
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Figure 5: ANTLRWorks Window Showing Lexer/Parser, Input, and Resulting Parse Tree

be ignored by the parser, such as whitespace tokens, but ANTLRWorks can usually guess by looking
for actions such as skip().

The interpreter interprets both the lexer and the parser rules by walking the internal NFA gram-
mar representation as if it were a recursive transition network, matching input symbols against the
NFA transition labels and using a stack to simulate rule invocations and returns. To ensure that
the behavior of the interpreter and generated parsers is identical, the interpreter uses the lookahead
DFA as computed by ANTLR in order to choose alternative NFA transitions (predict alternative
productions). Here is what the command-line equivalent emits:

$ java org.antlr.tool.Interp T.g WS def T-input
(<grammar T> (def (modifier public) (modifier static) int x = 3 ;))

where file T-input contains input “public static int x = 3;”. The arguments are the grammar
file, whitespace rule, start rule, and input file. The output is in LISP notation and is a serialized
version of ANTLRWorks’ visual display in Figure 5. For very large trees, ANTLRWorks also provides
a hierarchical view, accessed by clicking on the lower right icon shown in Figure 5.

Because any parser rule can be the start symbol, the interpreter can begin in any rule. For
example, by selecting rule modifier instead of def from the drop-down menu shown in Figure 5, that
rule can be tested with input “public” or “static”. New input sequences can be tested instantly
simply by entering them into the leftmost input pane and hitting the go button (the right-facing
triangular button).

If the input sequence is not in the language recognized by the specified start rule, ANTLRWorks
inserts an error node into the parse tree to indicate where the problem occurred and what it was.
Figure 6 demonstrates the result of interpreting an invalid input sequence for rule def (the INT is
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Figure 6: ANTLRWorks Window Showing Parse-Tree Resulting From Invalid Input

missing); the MismatchedTokenException node indicates that the interpreter found token type 9
not 5.

The main disadvantage of the interpreter is that it cannot execute actions or semantic predicates
(and backtracking is not yet implemented in the interpreter). To execute actions, ANTLRWorks
provides a debugger that connects to natively running parsers.

4 GRAMMAR DEBUGGER

Completing a grammar project involves verifying that the resulting parser matches input correctly,
detects erroneous input, and builds a proper data structure or emits proper output. By single
stepping and using breakpoints, a debugger helps clear up grammar issues but more importantly
highlights which user actions are executed and in what order. Tracing through a grammar also helps
track down errors in tree construction.

While all of this can be accomplished clumsily using a generic programming language debugger,
generic debuggers offer little more than stepping through methods and evaluating raw expressions.
ANTLRWorks’ debugger, on the other hand, focuses on the higher level, domain-specific data struc-
tures and processes associated with language recognition. ANTLRWorks displays input streams,
parser lookahead, parse trees, parse stacks, and ASTs as they change during recognition and ensures
that all visualizations stay in sync.

This section describes the ANTLRWorks debugger, one of its primary contributions. The debug-
ger is written in Java, but works with parsers written in any target language. It provides a number
of interesting capabilities including the ability to back up, which rewinds the input stream, parser
state, and partially deconstructs parse trees and ASTs.

4.1 Parse Tree Visualization

To illustrate the core features of the debugger, reconsider the grammar used in the interpreter section
above. ANTLRWorks can automatically generate a simple test rig and launch the debugger on a
grammar via the debug icon. ANTLRWorks uses ANTLR to generate code for the lexer and parser,
compiles them along with the test rig, and then asks for some input text and a start rule via a dialog
box. By clicking on the “fast forward” button, the debugger will initiate and race through the entire
parsing process as shown in Figure 7. The “fast forward” continues until end of file if there are no
breakpoints (the solid cursor is at the end of the start rule because it has finished parsing).

As with the interpreter, ANTLRWorks displays the input stream and the parse tree. The key
difference is that the display panes are active: clicking on a node in the parse tree, such as int,
highlights the corresponding token in the input pane and the token reference in the grammar that
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'int'

Figure 7: ANTLRWorks Debugger Showing Relationship Between Grammar, Input Stream, and
Parse Tree

matched it (Figure 7 identifies the relationship with manually drawn thick lines). Very large parse
tree and input stream panes can be detached using the icon in the pane’s upper right corner.

4.2 Debugging syntactic predicates

When ANTLR must backtrack to distinguish between alternative productions, it is usually difficult
to debug the parser because developers must track when the parser is speculating and when it is
not. ANTLRWorks clearly distinguishes between the two modes by showing all speculative parsing
branches in the parse tree in red. Consider rule s in the following simple grammar that uses a
syntactic predicates to distinguish between the two alternatives.

grammar B;
s : (e ’:’)=> e ’:’ // E.g., "x:", "(x):", "((x)):", ...

| e ’;’ // E.g., "x;", "(x);", "((x));", ...
;

e : ’(’ e ’)’
| ID
;

Figure 8 shows the parse tree obtained from matching input “((x));” starting in rule s. The first e
subtree under the s node is highlighted (manually thickened for printing here) to indicate that it was
matched only speculatively. The second subtree is the parse tree for the second alternative in rule
s that matches successfully. In situations where ANTLR must nest the backtrack, ANTLRWorks
changes the color through a series of gradations, one for each backtracking nesting level.
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Figure 8: Backtracking Across Two Alternatives of Rule s for Input “((x));”

4.3 Socket Protocol, Debug Events, and Language-Independent Debug-
ging

When debugging, parsers run natively and in a separate process from ANTLRWorks. They commu-
nicate over a socket connection using a simple text-based protocol. The parser acts as the server
while ANTLRWorks acts as the client. The socket protocol is sufficiently rich to allow ANTLRWorks
to reconstruct all of the relevant data structures and state of the parser. This loosely-coupled mecha-
nism is similar to Meta-Environment’s debugger connection except that Meta-Environment is based
upon a general remote procedure call mechanism rather than a high-level debug event protocol.

Grammars processed with the ANTLR -debug option result in parsers instrumented with debug-
ging event triggers, which amount to method calls to an event listener (in the Java target). Upon
the first parser rule invocation, the parser blocks waiting for a client connection from ANTLRWorks.
The debugging event method calls are translated directly to sockets events, which ANTLRWorks
decodes at the receiving end and retriggers as method calls to a parallel debug event listener. Figure
9 defines the socket protocol for the core debug events. Figure 10 shows the event trace generated
by the parser to recognize input “public” starting in rule modifier. Text strings associated with
tokens are terminated by newline, the end of event terminator, not an end quote for simplicity; e.g.,
see the LT and consumeToken events in Figure 10.

Using the Java target, the DebugEventListener interface identifies the set of events emitted
by a running parser and the DebugEventSocketProxy forwards events, one per line, over a socket
to ANTLRWorks or any other listener (such as a profiling listener). Any client listener can use a
RemoteDebugEventSocketListener object to convert socket events back into DebugEventListener

method call events. These events are similar in concept to the parser events generated by Eli’s Noosa
debugger [22]. Any top-down parsing strategy that can emit these socket events can potentially use
ANTLRWorks’ debugger.

By using a text protocol, ANTLRWorks avoids byte-ordering issues which can occur on binary
channels between different architectures. Unicode characters and other binary data are transmitted
using a UTF-8 encoding. Objects are serialized with an obvious but custom mechanism rather than a
Java-specific serialization to avoid limiting ANTLRWorks to debugging Java parsers. ANTLRWorks
should be able to connect to parsers written in any language with a socket library. Because local and
remote sockets behave identically, ANTLRWorks can also tap into running parsing applications even

16



Event and arguments

Handshaking

commence (implicit upon connection)
ANTLR protocol-version
grammar filename
terminate

Grammar navigation

enterRule rulename
exitRule rulename
enterAlt alt-number
exitAlt alt-number
enterDecision decision-number
exitDecision decision-number
location line col

Prediction, stream control

LT index type channel line col text
consumeToken index type channel line col text
consumeHidden index type channel line col text
mark marker
rewind marker
rewind

beginBacktrack

endBacktrack

beginResync

endResync

semanticPredicate boolean-result expression-text
Syntax errors exception classname input-stream-index line col

Figure 9: ANTLRWorks Socket Protocol for Core Debug Events

ANTLR 1
grammar T.g
enterRule modifier
enterAlt 1
location 5 12
LT 1 0 10 0 1 0 "public
LT 1 0 10 0 1 0 "public
consumeToken 1 0 10 0 1 0 "public
location 5 32
exitRule modifier
terminate

Figure 10: Literal Socket Protocol Generated by the Parser for Input “public” Starting in Rule
modifier
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if they are on another machine. Traditional target language debuggers can be used in conjunction
with ANTLRWorks’ debugger to examine program state while viewing the parser state visually.

The event stream sent by the parser to the debugger can be saved as a text file at any time so
that it may be analyzed later. For example, the programmer may want to compare the event dumps
for different inputs or different versions of the grammar to isolate problems in the grammar. The
event dumps could also be useful for analyzing grammar coverage and for unit testing.

The socket approach solves one final serious problem: how can ANTLRWorks pause, single step,
and stop at breakpoints in a running parser generated in an arbitrary target language running on
another machine? And, how can it do this without relying on native debuggers? It turns out that a
simple acknowledgment mechanism in the protocol provides sufficient control over the running parser.
Debugging events fired across a socket with the DebugEventSocketProxy wait for an acknowledgment
signal from the remote listener before proceeding. The parser continues when it receives this signal
after, for example, the ANTLRWorks user hits the start button again. Until the parser receives an
acknowledgment, it is effectively paused or stopped at a breakpoint. In this manner, ANTLRWorks
can step with any granularity, such as when it sees a particular event or input token, all without
using any native debugging facilities for the various targets.

4.4 Breakpoints and Single Stepping

ANTLRWorks single steps by grammar location by default, which mirrors the code execution and rule
method call trace of the running program; the user has the option of stepping over rule invocations.
There are also checkboxes to step by input symbol consumption and lookahead symbol examination.
For really fine-grained stepping, ANTLRWorks can single step on every event emitted by the parser.

Aside from the path taken through a grammar to match input sequences, developers often want
to know how the parser makes the actual decisions to choose from among alternative productions.
Because of its fine event stepping granularity, ANTLRWorks can step through the lookahead decision-
making process itself. Tokens examined during a single lookahead decision are italicized in the input
buffer pane (and highlighted in blue) so that the programmer knows how much of the input is used
to make a particular decision. For example, at the start of rule def, the lookahead DFA scans ahead
until it sees either “=” or “;” in order to choose between the alternatives. ANTLRWorks highlights
more and more the input stream as the user steps forward in the DFA prediction until the DFA
reaches the distinguishing symbol:

The input symbols used during prediction have been manually underlined here to make the figure
more clear. At this point, the parser rewinds the input stream to the public symbol and begins
parsing the first alternative.

As with a conventional code debugger, the user can set breakpoints in the grammar to stop
the parser when, for example, it reaches a particular rule. For very large input, however, stepping
ahead or jumping from breakpoint to breakpoint until an input phrase of interest is infeasible. Often
the event of interest is actually a recognition error and the programmer wants to quickly jump to
whatever state the parser is in when the input fails to match. There is no corresponding grammar
location where a breakpoint should be set—the debugger must be able to break upon recognition
exception. Once stopped at this event, the programmer can back up and replay the last few events
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of the parser to understand the chain of events that led to this exception (as described in the next
section).

Most debuggers are code-centric or in this case grammar-centric. In some circumstances, this is
very useful, but most of the time there is a very particular input sequence within a large file that
the parser is interpreting improperly. The developer needs to stop the parser at a particular input
location rather than at a particular grammar location. Without the ability to stop at a particular
input token, the debugger would have to stop many times at a breakpoint before reaching the input
location of interest.

It is worth noting that LR-based parsing strategies are at a distinct disadvantage in terms of
debugging, ironically because of LR’s recognition strength. LR parsers provisionally match multiple
productions at once before deciding which production to reduce and, therefore, have trouble moving
a traditional debugging cursor through a grammar. LL, on the other hand, always has an exact
grammar location, just like code is always executing in an exact program location. An LR debugger
could, however, use input token breakpoints just as easily as LL.

4.5 Rewind and Stepping Backwards

When tracking down parse errors or problems related to improperly recognized input sequences,
often the most crucial piece of information is what happens right before an error occurs or the parser
recognizes a particular input sequence. To aid in this situation, ANTLRWorks’ debugger can “time
travel” by stepping backwards in the execution trace once stopped at a breakpoint or when single
stepping forwards. The complete state of the parser including tree construction is unwound upon
each step backwards. ANTLRWorks can also rewind the entire event stream to restart the debugging
session.

User-defined actions in the target language are, of course, executed only once during the first
run of the debugger. They are executed by the natively running parser in a different process. If
the parser process terminates for any reason, the debugger can still navigate forwards or backwards
through the event stream. This ability is particularly useful if the parser crashes or terminates early.

4.6 AST Visualization

Translators are often broken into multiple phases out of necessity because of symbol resolution issues
or purely for simplicity reasons. The first phase is a parser that builds ASTs (and possibly other
data structures such as a symbol table). When the grammar produces an incorrect AST, it can be
difficult to track down exactly where in the grammar the erroneous subtree is created. ANTLRWorks
visually displays ASTs as they are built so that the developer can single step through the grammar at
the appropriate input position to discover why the improper tree is being created. The developer can
view trees as two-dimensional graphs or as hierarchal lists, which are sometimes easier to visualize
for very large inputs. Finally, as with the parse trees, ANTLRWorks shows the relationship between
AST nodes, the input stream, and the grammar.

ANTLR builds ASTs when the output option is set to AST; each rule implicitly returns an AST.
By default, the parser yields a flat list of nodes whose “payload” pointers point at the associated
tokens created by the lexer. ANTLR’s primary AST construction facility is based upon grammar
rewrite rules that map parser grammar productions to output tree grammar productions using the
-> operator. For example, the following rewrites added to rule def return trees with int at the root
and the identifier as the first child; the first alternative’s rewrite includes the initialization value as
the second child.
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Figure 11: ANTLRWorks Debugger Showing AST for Rule def and Input-AST Relationship

grammar T;
options {output=AST;}
def : modifier+ ’int’ ID ’=’ INT ’;’ -> ^(’int’ ID INT)

| modifier+ ’int’ ID ’;’ -> ^(’int’ ID)
;

modifier : ’public’ | ’static’ ;

Rule modifier has no rewrite specifications, but it builds the obvious single node from the single
input token automatically. The ^(...)tree specifiers in the rewrites follow a LISP-like syntax where
the first element is the root and the following elements are children. The rewrite rules can be any
valid production and, hence, may also contain repeated elements. For example, the following rewrites
include the modifier symbols in the AST:

def : modifier+ ’int’ ID ’=’ INT ’;’ -> ^(’int’ modifier+ ID INT)
| modifier+ ’int’ ID ’;’ -> ^(’int’ modifier+ ID)
;

modifier : ’public’ | ’static’ ;

In order to structure ASTs so that all subtree roots are operators and children are operands,
imaginary nodes (nodes for which there is no corresponding input) are often used as abstract opera-
tors. The following grammar version adds two imaginary token definitions and places the modifiers
in their own subtrees as shown in Figure 11.

grammar T;
options {output=AST;}
tokens {VARDEF; MOD;} // imaginary token types
def : modifier+ ’int’ ID ’=’ INT ’;’

-> ^(VARDEF ’int’ ( ^(MOD modifier) )+ ID INT)
| modifier+ ’int’ ID ’;’

-> ^(VARDEF ’int’ ( ^(MOD modifier) )+ ID)
;
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Event and arguments

AST parsing
consumeNode unique-ID type text
LN stream-index type channel line col text

AST construction

nilNode unique-ID
createNodeFromToken unique-ID token text
createNode unique-ID token-stream-index
becomeRoot new-root-ID old-root-ID
addChild root-ID child-ID
setTokenBoundaries unique-ID start-index stop-index

Figure 12: ANTLRWorks Socket Protocol for AST-Related Debug Events

By suffixing the subrule around the nested tree specifier with the + closure operator rather than the
modifier rule, a series of trees is produced with MOD at the root and a single modifier symbol as
child. If “^(MOD modifier+)” were used instead, a single MOD-rooted tree with multiple modifier
symbols as children would result.

In order to accommodate AST construction, the debugging protocol supports six extra events as
summarized in the bottom half of Figure 12. One of the challenges faced by ANTLRWorks when
trying to display trees as they are built is that ANTLRWorks does not have pointers into the memory
space of the natively running parser process. Building trees incrementally means that ANTLRWorks
must be able to uniquely identify nodes added previously to the tree in order to hang new nodes. We
settled on having the parser assign a unique identifier (like a “foreign” pointer) to each node that
it could pass to the debugger over the socket. In this way, the parser can send instructions about
the relationship between nodes. For example, the following event sequence creates a nil node with
identifier 5395534 as an initial root, creates a node with identifier 1892095 from the token at index
0 in the token stream, and then makes that node the child of the nil root node.

nilNode 5395534
createNode 1892095 0
addChild 1892095 5395534

The Java target uses System.identityHashCode(node) to generate unique identifiers.

4.7 Debugging Tree Parsers

After a language application’s parser creates an AST intermediate form, the subsequent phases walk
or manipulate the AST, passing it along to the next phase. A final phase emits output (usually
structured text) as a function of the AST and any supporting data structures, such as a symbol
table, constructed previously. The core activity of any phase is tree walking using one of three
fundamental approaches: the visitor pattern, a hand-built tree walker, or a formal tree grammar.

The visitor pattern performs a depth-first walk, executing an action method at each node. Al-
though easy to grasp, visitors work for only the simplest of translators. Visitors do not validate
tree structure, and actions are isolated “event triggers” that know only about the current node and
nothing about the surrounding tree structure. For example, visitor actions do not know whether an
identifier node is the left-hand side of a variable assignment or in an expression.
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Perhaps the most common implementation strategy used today is the hand-built tree walker, most
likely with heterogeneous tree nodes (a target language object type for each node type). The structure
of the tree is verified as the walker recursively descends just like a top-down parser. Arbitrary tree
structure context is available in the form of parameters passed downwards or globally visible variables
such as instance variables. As with hand-built parsers, this method is extremely flexible but lacks
the rigor of a grammatical approach.

The final tree walking approach is to use a tree grammar [3] from which ANTLR can generate
a tree walker. Tree grammars are easier to read, write, and debug than unrestricted handwritten
code just as parser grammars are easier to deal with than hand-built parsers. Further, ANTLR can
analyze the grammar looking for problems that would go unnoticed in a hand-built tree walker, such
as unreachable alternative productions. In the compiler arena, tree grammars are commonplace in
the form of instruction selectors such as BURG [23]. The main difference between an ANTLR tree
grammar used for translation and a tree grammar used for code generation is that ANTLR tree
grammars must be unambiguous.2 As with parser grammars, tree grammars usually result in more
maintainable solutions and provide accurate and concise documentation about the structure of a
translator’s intermediate form.

Parsing a tree is a matter of walking it and verifying that it has not only the proper nodes but
also the proper two-dimensional structure. ANTLR serializes trees into one-dimensional streams of
tree nodes computed by iterating over the nodes in a tree via a depth-first walk. To encode the
two-dimensional structure, ANTLR inserts imaginary UP and DOWN nodes to indicate the start or
end of a child list. In this manner, ANTLR reduces tree parsing to conventional one-dimensional
token stream parsing. In fact ANTLR lexers, parsers, and tree parsers all derive from the same
BaseRecognizer class in the Java target. This normalization makes ANTLRWorks’ job much easier.
There are only two differences from token string parsing: (1) the input pane must display a tree
instead of input text and (2) token lookahead and consume events become LN (lookahead node) and
consumeNode, respectively; see top half of Figure 12.

Because of their two-dimensional nature, debugging tree parsers with a generic programming
debugger is notoriously difficult. Also, the relationship of the AST nodes to original input symbols is
not always obvious. As observed on the ANTLR mailing list, this is one of the reasons why developers
resort to hand-built tree walkers.

ANTLRWorks can debug tree parsers just as easily as token stream parsers so that developers can
trace the parse. Further, clicking on an input AST node or parse tree node highlights the associated
element in the input tree pane and shows the associated grammar position. Figure 13 shows the
AST built by the def rule in the previous section as input to the following tree grammar:

tree grammar TP;
options {tokenVocab=T;} // share token types with T grammar
def : ^(VARDEF ’int’ ( ^(MOD modifier) )+ ID INT)

| ^(VARDEF ’int’ ( ^(MOD modifier) )+ ID)
;

modifier : ’public’ | ’static’ ;

2Code generator grammars specify multiple productions for the same tree construct because the same operation can
often be implemented in multiple ways in machine language. E.g., x+1 can be implemented with an add instruction
and an increment register instruction. BURG performs an optimal bottom-up walk of the tree, choosing productions
that provide the lowest overall cost.
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Figure 13: AST Input and Parse Tree from Tree Grammar TP and Input “public int x = 3;”

The tree grammar was built by cutting out the parse grammar productions, leaving only the AST
rewrite specifications in def. ANTLRWorks shows the parse tree computed while applying gram-
matical structure to the input AST using the rules in tree grammar TP. The parse tree illustrates
that the AST created from input “public int x = 3;” (shown in the input pane) is serialized to
node stream:

VARDEF DOWN int MOD DOWN public UP x 3 UP

The original input is obtained from a parse tree by collecting the leaves. The relationship between
the AST and the serialized node stream is made more clear by comparing the node stream and the
AST in tree grammar notation:

^(VARDEF int ^(MOD public) x 3)

DOWN immediately follows root nodes and UP ends child lists.

5 MISCELLANEOUS FEATURES

ANTLRWorks provides a grammar-aware editor that has the expected features like syntax coloring,
auto-indentation, and identifier auto-completion but also has a number of other features that make
grammar development easier as described in the next two sections.

5.1 Grammar navigation and structure

ANTLRWorks provides several navigation features: the developer can jump to the declaration of
any token or rule from the reference with a keystroke and jump to any rule by typing its first few
letters. In addition, a “find usages” function can be used to find all usages of a particular token or
rule. These features are useful when trying to understand the structure of a grammar.

Getting an overall view of the rule relationships can be challenging with large grammars so ANTL-
RWorks also provides a rule dependency graph showing the rules invoked by each rule. This helps
when modifying a rule because it gives some idea of the effect on the overall grammar. ANTLRWorks
can produce a dependency graph starting at any lexer or parser rule.
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As grammars get larger, organizing the grammar becomes more important. For example, devel-
opers usually define all of the expression-related rules contiguously in a grammar file. ANTLRWorks
can logically group rules in the rule list pane as well, allowing the developer to see the grammar as
a hierarchy of rules instead of a flat text file. The lexical analyzer rules are automatically grouped
under a lexer group. In addition, as actions become more numerous in a grammar, the surrounding
grammar elements become obscured; actions within rules can be collapsed to hide them.

5.2 Refactoring

Refactoring code [24] is an important programmer activity when developing large, long-lived appli-
cations because it improves code readability, stability, and maintainability. Eclipse [25] and IntelliJ
[26] offer a huge variety of convenient refactoring operations and programmers have come to ex-
pect these features in their development environments. ANTLRWorks provides a small but useful
set of refactoring operations that help developers clean up grammars and migrate legacy LR-based
grammars for tools such as YACC to an LL-based grammar for ANTLR:

• Remove left recursion. Grammars found on the Internet often use left recursion to encode
repeated elements. ANTLRWorks can refactor left-recursive rules into equivalent versions using
EBNF closure subrules.

• Rename tokens, rename rules, and replace literals with token name. As grammar development
proceeds, the functionality of rules can drift over time. Renaming grammar elements can make
grammars easier to maintain.

• Extract and inline rules. As rules grow and shrink during grammar development, these refac-
toring patterns are very helpful because they encourage programmers to build well-structured
grammars.

6 RELATED WORK

There are numerous tools related to grammar development environments with graphical interfaces.
Most of them are academic, but there are some commercial tools. Some of the academic tools
are focused on generating language development editors or other applications using generative pro-
gramming from syntax and semantic specifications. ANTLRWorks is tightly focused on grammar
development itself rather than grammar development as a means to creating another application. In
that sense, ANTLRWorks has more in common with commercial tools, which are typically parser
generators that come with grammar development environments.

Commercial parser generator tools are, unfortunately, not open source, can be expensive, and
some of them seem not to be maintained anymore: we were unable to get answers to e-mails about
ProGrammar [27] and Visual Parse++ [28]. While each commercial tool has some interesting fea-
tures, ANTLRWorks has a superset of these features. Naturally all commercial tools have a grammar
editor but most of them appear to use a raw text editor. ANTLR Studio [29] has probably the best
editor experience because of it fast syntax coloring, intelligent auto-completion, and ability to edit
Java grammar actions. ANTLR Studio, however, only works with ANTLR version 2 grammars not
version 3. ANTLRWorks’ editor also provides features such as “find usages”, rule dependency graph
visualization, and grammar refactoring. The rapid prototyping interpreter feature of ANTLRWorks
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appears to be unavailable in commercial tools; TextTransformer [20] has a similar feature, but we
were unable to get it to work.

Every commercial grammar development tool has a debugger, but only ProGrammar and Text-
Transformer have the data-centric breakpoint feature. ANTLRWorks has three main advantages: (1)
its rewind and replay mode based on the event stream, (2) its ability to attach to a remote parser
running on another machine, (3) its ability to debug parsers written in any language.

There are a number of academic tools that allow you to develop grammars such as ASF+SDF’s
Meta-Environment [11], LAUNCHPADS [21], Synthesizer Generator [30] (has now become com-
mercial), SmartTools [31], LISA [32], and GTB [33] (Grammar ToolBox). Meta-Environment has
grammar-aware editing, on-the-fly parser generation (supporting immediate grammar testing), GLR
parse forest visualization, and some nice features that identify grammar issues such as useless sym-
bols, typos, and inconsistent priorities and associativity. Meta-Environment can also generate syntax
highlighters and debuggers for languages described by grammars, which includes debugging its own
grammars [19]. ANTLRWorks’ debugger is less general because it works only on ANTLR grammars
but is commensurately simpler and more task specific.

LAUNCHPADS is an interesting grammar development environment for data description lan-
guages that allows users to iteratively develop data grammars by selecting and identifying the various
fields. Users are also able to quickly test data against the grammar and can see resulting parse trees.
A statistical approach to automatically discovering underlying grammatical structure of data (such
as log files) is under development.

SmartTools [31] has a grammar aware editor and can display parse trees.
LISA has a number of features that are similar to ANTLRWorks including a grammar-aware

editor, BNF viewer, syntax tree viewer, and automata visualizer. Like Meta-Environment and Syn-
thesizer Generator, LISA can automatically generate syntax directed editors and other visualization
tools.

While GTB has a variety of visualization views to show grammars, finite automata, and grammar
dependency graphs, GTB is not strictly speaking an interactive grammar development environment.

In the related world of natural language processing, Allman and Beale [34] provide a system for
building natural language grammars using a visual interface and also contains a grammar debugger.

DDF [35] (DSL Debugger Framework) is a set of Eclipse plugins for debugging domain specific
languages described with ANTLR grammars. Aspects are used to weave in support code that maps
the generated general purpose code back into the domain specific language source code. DDF reuses
the existing Java Eclipse general debugger to debug domain specific languages. DDF is similar to
ANTLR Studio in that both map generated code back to a domain specific language, (an ANTLR
grammar in ANTLR Studio’s case and the domain specific language source code in DDF’s case). In
contrast, ANTLRWorks uses a custom parser debugger that works with any target language.

Finally, we understand that a grammar development environment for SableCC [36] is under
construction.

7 FUTURE WORK

There are several potential improvements to ANTLRWorks we are considering. For example, ANTL-
RWorks is unable to debug lexers because ANTLR currently does not trigger debugging events for
lexers. Also, ANTLR integrates the StringTemplate template engine [37] by allowing rules to specify
template rewrites analogous to AST rewrites. At the moment, ANTLRWorks does not have syntax
highlighting for templates.
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In the testing realm, a grammar testing tool called gUnit is under development (inspired by parse-
unit, a part of Stratego/XT that can test SDF syntax definitions [38]). ANTLRWorks will need to
associate unit tests with rules, letting developers specify input/output pairs, input/parse-tree pairs,
etc...

ANTLRWorks could also introduce a test button that automatically sought out input sequences
that crashed the language application. ANTLR knows how to generate random sentences from com-
bined lexer/parser grammars. ANTLRWorks could automatically test these language applications
with these random sentences, looking for exceptions and other program errors.

8 CONCLUSION

ANTLRWorks is a complete development environment for ANTLR grammars. Its editor has use-
ful grammar editing, refactoring, and navigation features. The interpreter supports rapid grammar
prototyping by allowing developers to test grammar rules separately as they are developed, all with-
out having to go through the build process each time. By highlighting nondeterministic paths in
the syntax diagram, ANTLRWorks provides a helpful tool for identifying and understanding parser
nondeterminisms and other grammar issues. The debugger supports any ANTLR target language
and has some features unavailable in other systems including its ability to “time travel”, stepping
backwards in the parse to discover the chain of events leading up to a parser state of interest. ANTL-
RWorks tries to make debugging backtracking parsers simpler. Speculatively-matched alternatives
are included in the parse tree and differentiated from successful alternatives by color gradations.
For parsers that build ASTs, ANTLRWorks makes it easy to identify which nodes are created and
where during the parse to isolate erroneously constructed ASTs. Subsequent phases of a transla-
tor that use tree grammars may also be debugged like parser grammars. ANTLRWorks is written
entirely in Java for portability reasons and is available open-source under the BSD license from
http://www.antlr.org/works. A plug-in for IntelliJ is available.
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